Skip to main content
Log in

Investigation on Hydrogen Embrittlement Sensitivity of Hot-Rolled and Annealed Microstructure to AISI 430 Ferritic Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper studied the influence of hot rolling and annealing processes on the hydrogen embrittlement sensitivity of AISI 430 ferritic stainless steel and the changes in hydrogen-induced fracture modes through electrochemical hydrogen charging experiments. The tensile test results show that the hot-rolled specimen has the highest hydrogen embrittlement sensitivity, and the highest yield strength and tensile strength. After the heat treatment, the yield strength of all specimens was significantly increased after hydrogen charging, which was attributed to the hydrogen-induced dislocation pinning effect. The fracture morphology analysis revealed that the hot-rolled specimen was dominated by intergranular fracture, accompanied by cleavage fracture, predominantly by the hydrogen-enhanced decohesion (HEDE) mechanism, while the fracture modes of annealed specimen were cleavage fracture and quasi-cleavage fracture due to the hydrogen-enhanced localized plasticity (HELP) and hydrogen-enhanced decohesion (HEDE) mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Dutta, A Review on Production, Storage of Hydrogen and Its Utilization as an Energy Resource, J. Ind. Eng. Chem., 2014, 20(4), p 1148–1156.

    Article  CAS  Google Scholar 

  2. X. Xing, R. Cheng, G. Cui, J. Liu, J. Gou, C. Yang, Z. Li and F. Yang, Quantification of the Temperature Threshold of Hydrogen Embrittlement in X90 Pipeline Steel, Mater. Sci. Eng. A, 2021, 800, p 140118.

    Article  CAS  Google Scholar 

  3. C. Zhou, B. Ye, Y. Song, T. Cui, P. Xu and L. Zhang, Effects of Internal Hydrogen and Surface-Absorbed Hydrogen on the Hydrogen Embrittlement of X80 Pipeline Steel, Int. J. Hydrog. Energy, 2019, 44(40), p 22547–22558.

    Article  CAS  Google Scholar 

  4. E. Ohaeri, J. Omale, K.M.M. Rahman and J. Szpunar, Effect of Post-processing Annealing Treatments on Microstructure Development and Hydrogen Embrittlement in API 5L X70 Pipeline Steel, Mater. Charact., 2020, 161, p 110124.

    Article  CAS  Google Scholar 

  5. Q. Deng, W. Zhao, W. Jiang, T. Zhang, T. Li and Y. Zhao, Hydrogen Embrittlement Susceptibility and Safety Control of Reheated CGHAZ in X80 Welded Pipeline, J. Mater. Eng. Perform., 2018, 27(4), p 1654–1663.

    Article  CAS  Google Scholar 

  6. X. Chen, L. Ma, C. Zhou, Y. Hong, H. Tao, J. Zheng and L. Zhang, Improved Resistance to Hydrogen Environment Embrittlement of Warm-Deformed 304 Austenitic Stainless Steel in High-pressure Hydrogen Atmosphere, Corros. Sci., 2019, 148, p 159–170.

    Article  CAS  Google Scholar 

  7. I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross and K.E. Nygren, Hydrogen Embrittlement Understood, Metall. Mater. Trans. B, 2015, 46(3), p 1085–1103.

    Article  CAS  Google Scholar 

  8. S. Wang, A. Nagao, P. Sofronis and I.M. Robertson, Assessment of the Impact of Hydrogen on the Stress Developed Ahead of a Fatigue Crack, Acta Mater., 2019, 174, p 181–188.

    Article  CAS  Google Scholar 

  9. C. Zhou, Q. Huang, Q. Guo, J. Zheng, X. Chen, J. Zhu and L. Zhang, Sulphide Stress Cracking Behaviour of the Dissimilar Metal Welded Joint of X60 Pipeline Steel and Inconel 625 Alloy, Corros. Sci., 2016, 110, p 242–252.

    Article  CAS  Google Scholar 

  10. A. Turk, G.R. Joshi, M. Gintalas, M. Callisti, P.E.J. Rivera-Díaz-del-Castillo and E.I. Galindo-Nava, Quantification of Hydrogen Trapping in Multiphase Steels: Part I-Point Traps in Martensite, Acta Mater., 2020, 194, p 118–133.

    Article  CAS  Google Scholar 

  11. A. Turk, S.D. Pu, D. Bombač, P.E.J. Rivera-Díaz-del-Castillo and E.I. Galindo-Nava, Quantification of Hydrogen Trapping in Multiphase Steels: Part II–Effect of Austenite Morphology, Acta Mater., 2020, 197, p 253–268.

    Article  CAS  Google Scholar 

  12. C.D. Beachem, A New Model for Hydrogen-Assisted Cracking (hydrogen “embrittlement”), Metall. Mater. Trans. B, 1972, 3(2), p 441–455.

    Article  Google Scholar 

  13. A.R. Troiano, The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals, Trans. Am. Soc. Met., 1960, 52, p 54–80.

    Google Scholar 

  14. R.A. Oriani, Whitney Award Lecture-1987: Hydrogen-The Versatile Embrittler, Corrosion, 1987, 43(7), p 390–397.

    Article  CAS  Google Scholar 

  15. I.M. Robertson, The Effect of Hydrogen on Dislocation Dynamics, Eng. Fract. Mech., 2001, 68(6), p 671–692.

    Article  Google Scholar 

  16. M. Wasim, M.B. Djukic and T.D. Ngo, Influence of Hydrogen-Enhanced Plasticity and Decohesion Mechanisms of Hydrogen Embrittlement on the Fracture Resistance of Steel, Eng. Fail. Anal., 2021, 123, p 105312.

    Article  CAS  Google Scholar 

  17. M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak and B. Rajicic, The Synergistic Action and Interplay of Hydrogen Embrittlement Mechanisms in Steels and Iron: Localized Plasticity and Decohesion, Eng. Fract. Mech., 2019, 216, p 106528.

    Article  Google Scholar 

  18. Y. Ogawa, D. Birenis, H. Matsunaga, O. Takakuwa, J. Yamabe, Ø. Prytz and A. Thøgersen, The Role of Intergranular Fracture on Hydrogen-Assisted Fatigue Crack Propagation in Pure Iron at a Low Stress Intensity Range, Mater. Sci. Eng. A, 2018, 733, p 316–328.

    Article  CAS  Google Scholar 

  19. P. Novak, R. Yuan, B.P. Somerday, P. Sofronis and R.O. Ritchie, A Statistical, Physical-Based, Micro-mechanical Model of Hydrogen-Induced Intergranular Fracture in Steel, J. Mech. Phys. Solids, 2010, 58(2), p 206–226.

    Article  CAS  Google Scholar 

  20. M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki and D. Raabe, Hydrogen-Assisted Decohesion and Localized Plasticity in Dual-phase Steel, Acta Mater., 2014, 70, p 174–187.

    Article  CAS  Google Scholar 

  21. M. Jedrychowski, J. Tarasiuk, B. Bacroix and S. Wronski, Electron Backscatter Diffraction Investigation of Local Misorientations and Orientation Gradients in Connection with Evolution of Grain Boundary Structures in Deformed and Annealed Zirconium. A New Approach in Grain Boundary Analysis, J. Appl. Crystallogr., 2013, 753, p 93–96.

    Google Scholar 

  22. M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-phase Steels Studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 2010, 527(10), p 2738–2746.

    Article  CAS  Google Scholar 

  23. Q. Liu and N. Hansen, Geometrically Necessary Boundaries and Incidental Dislocation Boundaries Formed During Cold Deformation, Scr. Metall. Mater., 1995, 32(8), p 1289–1295.

    Article  CAS  Google Scholar 

  24. J. Lufrano and P. Sofronis, Enhanced Hydrogen Concentrations Ahead of Rounded Notches and Cracks-Competition Between Plastic Strain and Hydrostatic Stress, Acta Mater., 1998, 46(5), p 1519–1526.

    Article  CAS  Google Scholar 

  25. N. Bandyopadhyay, J. Kameda and C.J. McMahon, Hydrogen-Induced Cracking in 4340-type Steel: Effects of Composition, Yield Strength, and H2 Pressure, Metall. Trans. A, 1983, 14(4), p 881–888.

    Article  CAS  Google Scholar 

  26. Y. Murakami, T. Kanezaki and Y. Mine, Hydrogen Effect against Hydrogen Embrittlement, Metall. Mater. Trans. A, 2010, 41(10), p 2548–2562.

    Article  CAS  Google Scholar 

  27. I.H. Katzarov, D.L. Pashov and A.T. Paxton, Hydrogen Embrittlement I. Analysis of Hydrogen-Enhanced Localized Plasticity: Effect of Hydrogen on the Velocity of Screw Dislocations in α-Fe, Phys. Rev. Mater., 2017, 1(3), p 033602.

    Article  Google Scholar 

  28. S. Taketomi, R. Matsumoto and S. Hagihara, Molecular Statics Simulation of the Effect of Hydrogen Concentration on 112 < 111 > Edge Dislocation Mobility in Alpha Iron, ISIJ Int., 2017, 57(11), p 2058–2064.

    Article  CAS  Google Scholar 

  29. W.J. Qi, R.G. Song, X. Qi, H. Li, Z.X. Wang, C. Wang and J.R. Jin, Hydrogen Embrittlement Susceptibility and Hydrogen-Induced Additive Stress of 7050 Aluminum Alloy Under Various Aging States, J. Mater. Eng. Perform., 2015, 24(9), p 3343–3355.

    Article  CAS  Google Scholar 

  30. M. Okayasu and T. Fujiwara, Effects of Microstructural Characteristics on the Hydrogen Embrittlement Characteristics of Austenitic, Ferritic, and γ–α Duplex Stainless Steels, Mater. Sci. Eng. A, 2021, 807, p 140851.

    Article  CAS  Google Scholar 

  31. C.L. Lai, L.W. Tsay and C. Chen, Effect of Microstructure on Hydrogen Embrittlement of Various Stainless Steels, Mater. Sci. Eng. A, 2013, 584, p 14–20.

    Article  CAS  Google Scholar 

  32. D. Zhou, T. Li, D. Huang, Y. Wu, Z. Huang, W. Xiao, Q. Wang and X. Wang, The Experiment Study to Assess the Impact of Hydrogen Blended Natural Gas on the Tensile Properties and Damage Mechanism of X80 Pipeline Steel, Int. J. Hydrog. Energy, 2021, 46(10), p 7402–7414.

    Article  CAS  Google Scholar 

  33. E. Malitckii, Y. Yagodzinskyy, P. Lehto, H. Remes, J. Romu and H. Hänninen, Hydrogen Effects on Mechanical Properties of 18%Cr Ferritic Stainless Steel, Mater. Sci. Eng. A, 2017, 700, p 331–337.

    Article  CAS  Google Scholar 

  34. M. Maxelon, A. Pundt, W. Pyckhout-Hintzen and R. Kirchheim, Small Angle Neutron Scattering of Hydrogen Segregation at Dislocations in Palladium, Scr. Mater., 2001, 44(5), p 817–822.

    Article  CAS  Google Scholar 

  35. R. Kirchheim, Reducing Grain Boundary, Dislocation Line and Vacancy Formation Energies by Solute Segregation: II. Experimental Evidence and Consequences, Acta Mater., 2007, 55(15), p 5139–5148.

    Article  CAS  Google Scholar 

  36. V.G. Gavriljuk, V.N. Shivanyuk and J. Foct, Diagnostic Experimental Results on the Hydrogen Embrittlement of Austenitic Steels, Acta Mater., 2003, 51(5), p 1293–1305.

    Article  CAS  Google Scholar 

  37. V.G. Gavriljuk, V.N. Shivanyuk and B.D. Shanina, Change in the Electron Structure Caused by C, N and H Atoms in Iron and Its Effect on their Interaction with Dislocations, Acta Mater., 2005, 53(19), p 5017–5024.

    Article  CAS  Google Scholar 

  38. S. Moriya, H. Matsui and H. Kimura, The Effect of Hydrogen on the Mechanical Properties of High Purity Iron II. Effect of Quenched-in Hydrogen Below Room Temperature, Mater. Sci. Eng., 1979, 40(2), p 217–225.

    Article  CAS  Google Scholar 

  39. O. Di Pietro, G. Napoli, M. Gaggiotti, R. Marini, G. Stornelli and A. Schino, Analysis of Plastic Forming Parameters In Aisi 441 Stainless Steel, Acta Metall. Slovaca, 2020, 26, p 178–183.

    Article  Google Scholar 

  40. M.L. Martin, M.J. Connolly, F.W. DelRio and A.J. Slifka, Hydrogen Embrittlement in Ferritic Steels, Appl. Phys. Rev., 2020, 7(4), p 041301.

    Article  CAS  Google Scholar 

  41. S.S.M. Tavares, I.N. Bastos, J.M. Pardal, T.R. Montenegro and M.R. da Silva, Slow Strain Rate Tensile Test Results of New Multiphase 17%Cr Stainless Steel Under Hydrogen Cathodic Charging, Int. J. Hydrog. Energy, 2015, 40(47), p 16992–16999.

    Article  CAS  Google Scholar 

  42. R. Kirchheim, Revisiting Hydrogen Embrittlement Models and Hydrogen-Induced Homogeneous Nucleation of Dislocations, Scr. Mater., 2010, 62(2), p 67–70.

    Article  CAS  Google Scholar 

  43. X. Ren, Q. Zhou, W. Chu, J. Li, Y. Su and L. Qiao, The Mechanism of Nucleation of Hydrogen Blister in Metals, Chinese Sci. Bull., 2007, 52(14), p 2000–2005.

    Article  CAS  Google Scholar 

  44. S. Wang, M.L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto and I.M. Robertson, Hydrogen-Induced Intergranular Failure of Iron, Acta Mater., 2014, 69, p 275–282.

    Article  CAS  Google Scholar 

  45. M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis and I.M. Robertson, On the Formation and Nature of Quasi-Cleavage Fracture Surfaces in Hydrogen Embrittled Steels, Acta Mater., 2011, 59(4), p 1601–1606.

    Article  CAS  Google Scholar 

  46. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis and I.M. Robertson, The Role of Hydrogen in Hydrogen Embrittlement Fracture of Lath Martensitic Steel, Acta Mater., 2012, 60(13), p 5182–5189.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Shanxi International Cooperation Project (Approval Number: 201603D421026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Lv, W., Xiao, W. et al. Investigation on Hydrogen Embrittlement Sensitivity of Hot-Rolled and Annealed Microstructure to AISI 430 Ferritic Stainless Steel. J. of Materi Eng and Perform 31, 1728–1736 (2022). https://doi.org/10.1007/s11665-021-06332-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06332-9

Keywords

Navigation