Skip to main content
Log in

Hydrogen degradation effects on mechanical properties in T24 weld microstructures

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Spectacular failure cases of fossil power stations in the recent years exhibited severe cracking in T24 welds. The results show that hydrogen-assisted cracking up to 200 °C cannot be excluded. Hence, it is important to gain a basic understanding on how hydrogen might affect the basic material properties in the respective weld microstructures. The present study focuses on hydrogen degradation of the respective weld microstructures, i.e., the weld metal and the coarse grained heat affected zone, where actually cracking appeared in practice. Tensile tests were carried out for coarse grain heat-affected zone (CGHAZ) and the weld metal in uncharged and electrochemically hydrogen-charged condition. It turned out that both microstructures show distinct tendency for gradual degradation of mechanical properties in the presence of increasing hydrogen concentration. Already for a hydrogen concentration about and above 2 ml/100 g Fe, a significant ductility reduction has been observed. SEM investigations revealed that the fracture topography changes from ductile topography in uncharged condition to intergranular topography for the CGHAZ and to ductile-brittle mix for the weld metal (WM) in hydrogen charged condition. Ti-rich inclusions were identified as central regions of quasi-cleavage fracture areas in the WM. An approximation procedure is applied to quantify the degradation intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Hahn B, Bendick W (2008) Rohrstaehle fuer moderne Hochleistungskraftwerke. 3R Int 47:3–12

    Google Scholar 

  2. Heuser H, Jochum C, Lecomte-Beckers J, Carton M, Schubert F, Ennis PJ (2002) Characterization of matching filler metals for new ferritic-bainitic steels like T/P 23 and T/P 24, Materials for Advanced Power Engineering 2002. Forschungszentrum Jülich, Jülich

    Google Scholar 

  3. Dhooge A, Vekeman J (2005) New generation 21/4Cr steels T/P 23 and T/P 24 weldabiltiy and high temperature properties. Weld World 49:75–93. doi:10.1007/bf03266492

    Article  Google Scholar 

  4. Garet M, Brass AM, Haut C, Guttierez-Solana F (1998) Hydrogen trapping on non-metallic inclusions in Cr-Mo low alloyed steels. Corros Sci 40:1073–1086. doi:10.1016/S0010-938x(98)00008-0

    Article  Google Scholar 

  5. Albert SK, Ramasubbu V, Parvathavarthini N, Gill TPS (2003) Influence of alloying on hydrogen-assisted cracking and diffusible hydrogen content in Cr-Mo steel welds. Sadhana 28:383–393. doi:10.1007/bf02706439

    Article  Google Scholar 

  6. Coudreuse L, Bocquet P, Cheviet L (1992) Hydrogen trapping in Cr-Mo steels for hydro processing reactors. PVP-Vol. 239/ MPC- Vol. 33, Serviceability of Petroleum, Process and Power Equipment, ASME

  7. Brouwer RC (1993) Hydrogen concentration distribution in the wall of pressure vessels made of conventional and V-modified steels. Int J Pres Ves Pip 56:133–148. doi:10.1016/0308-0161(93)90091-7

    Article  Google Scholar 

  8. Brouwer RC (1992) Hydrogen diffusion and solubility in vanadium modified pressure vessel steels. Scripta Metall Mater 27:353–358. doi:10.1016/0956-716x(92)90525-j

    Article  Google Scholar 

  9. Nowack R, Goette C, Heckmann S (2011) Quality management at RWE using T24 boiler material as an example (in German). VGB Powertech J 11:1–5

    Google Scholar 

  10. Boewe J, Becker M (2013) Modified commissioning procedure for USC boilers using material T24., Hitachi Power Europe GmbH Germany, http://pennwell.websds.net/2013/vienna/pge/papers/T4S5O3-paper.pdf. Accessed on 27 November 2014

    Google Scholar 

  11. Husemann RU, Devrient S, Kilian R (2012) Cracking mechanism in high temperature water-T24 Root cause analysis program. In: NN 38th VDI-Jahrestagung Schadensanalyse in Kraftwerken. VDI-Wissensforum, Düsseldorf, pp 87–103

    Google Scholar 

  12. Luedenbach G (2012) Stress corrosion cracking of T24. VGB Powertech. http://www.vgb.org/en/hv_12_presentations-dfid-47601.html. Accessed on 24 Mai 2014

  13. Hoffmeister H, Boellinghaus T (2014) Modeling of combined anodic dissolution/hydrogen-assisted stress corrosion cracking of low- alloyed power plant steels in high-temperature water environments. Corros Sci 70:563–578. doi:10.5006/1048

    Article  Google Scholar 

  14. Baeumel A, Drotden P, Pirchner H, Wagner G (1983) Study of stress corrosion cracking on welded high-strength fine grained structural steels in boiled feed water. Stahl Eisen 103:1091–1096

    Google Scholar 

  15. Nevasmaa P, Laukanen A (2005) Assessment of hydrogen cracking risk in multipass weld metal of 2.25Cr-1Mo-0.25V-TiB (T24) boiler steel. Weld World 49:45–58. doi:10.1007/bf03263423

    Article  Google Scholar 

  16. Mohyla P, Foldyna V (2009) Improvement of reliability and creep resistance in advanced low-alloy steels. Mat Sci Eng A-Struct 510–511:234–237. doi:10.1016/j.msea.2008.05.056

    Article  Google Scholar 

  17. Blach J, Falat F, Sevc P (2011) The influence of hydrogen charging on the notch tensile properties and fracture behavior on dissimilar weld joints of advanced Cr-Mo-V and Cr-Ni-Mo creep resistant steels. Eng Fail Anal 18:485–491. doi:10.1016/j.engfailanal.2010.09.043

    Article  Google Scholar 

  18. Dayal RK, Parvathavarthini N (2003) Hydrogen embrittlement in power plant steels. Sadhana 28:431–451. doi:10.1007/bf02706442

    Article  Google Scholar 

  19. Zimmer P, Seeger DM, Boellinghaus T, Cerjak H (2005) Hydrogen permeation and related material properties of high strength steels, High strength steels for hydropower plants - Proceedings. Institute for Materials Science, Welding and Forming, Graz, pp 1–18, paper-no 17

    Google Scholar 

  20. Heuser H (2009) Schweißtechnische Verarbeitung neuer Kraftwerkstähle. Forum-Schweißtechnik im Kraftwerksbau (SLV München). http://www.bayern-innovativ.de/schweisstechnik2009/download/heuser.pdf. Accessed 20 May 2014

  21. Michler T, Naumann J (2010) Microstructure aspects upon hydrogen environment embrittlement of various bcc steels. Int J Hydrog Energ 35:821–832. doi:10.1016/j.ijhydene.2009.10.092

    Article  Google Scholar 

  22. Salmi S, Rhode M, Juettner S, Zinke M (2015) Hydrogen determination in 22MnB5 steel grade by use of carrier gas hot extraction technique. Weld World 59:137–144. doi:10.1007/s40194-014-0186-z

    Article  Google Scholar 

  23. Kannengiesser T, Tiersch N (2010) Measurements of diffusible hydrogen contents at elevated temperatures using different hot extraction techniques - an international round robin test. Weld World 54(5):R115–R122. doi:10.1007/BF03263497

    Article  Google Scholar 

  24. Coudreuse L, Bocquet P (1995) Hydrogen diffusion and trapping in Cr-Mo steels for hydrotreating reactors. In: Turnbull A (ed) Hydrogen cracking in metals. The Institute of Materials, London, pp 227–239

    Google Scholar 

  25. Brass AM, Guillon F, Vivet S (2004) Quantification of hydrogen diffusion and trapping in 2.25Cr-1Mo and 3Cr-1Mo-V steels with electrochemical permeation technique and melt extraction. Metall Mater Trans A 35:1449–1464. doi:10.1007/s11661-004-0253-y

    Article  Google Scholar 

  26. Takahashia J, Kawakamia K, Taruib T (2012) Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography. Scripta Mater 67:213–216. doi:10.1016/j.scriptamat.2012.04.022

    Article  Google Scholar 

  27. Depover T, Monbaliu O, Wallaert E, Verbeken K (2015) Effect of Ti, Mo and Cr based precipitates on the hydrogen trapping and embrittlement of Fe-C-X Q&T alloys. Int J Hydrog Energ. doi:10.1016/j.ijhydene.2015.06.157, In Press, Corrected proof

    Google Scholar 

  28. Parvathavarthini N, Saroja S, Dayal RK, Khatak HS (2001) Studies on hydrogen permeability of 2.25%Cr-1%Mo ferritic steel: correlation with microstructure. J Nucl Mater 288:187–196. doi:10.1016/S0022-3115(00)00706-6

    Article  Google Scholar 

  29. Mohyla P, Foldyna V (2009) Improvement of reliability and creep resistance in advanced low-alloy steels. Mater Sci Eng A 510(511):234–237. doi:10.1016/j.msea.2008.05.056

    Article  Google Scholar 

  30. Boellinghaus T, Hoffmeister H, Dangeleit A (1995) A scatterband for hydrogen diffusion coefficients in micro-alloyed low carbon structural steels. Weld World 35(2):83–96

    Google Scholar 

  31. Liu Y, Wang M, Liu G (2013) Hydrogen trapping in high strength martensitic steel after austenitized at different temperatures. Int J Hydrog Energ 38:14364–14368. doi:10.1016/j.ijhydene.2013.08.121

    Article  Google Scholar 

  32. Matsuoka S, Homma N, Tanaka H, Fukushima Y, Murakami Y (2006) Effect of hydrogen on the tensile properties of 900MPa-class JIS-SCM435 low-alloy-steel for use in storage cylinder of hydrogen station. J Jpn Inst Metals 70:1002–1011. doi:10.2320/jinstmet.70.1002

    Article  Google Scholar 

  33. Birnbaum HK, Sofronis P (1994) Hydrogen-enhanced localized plasticity - a mechanism for hydrogen-related fracture. Mat Sci Eng A-Struct 176:191–202. doi:10.1016/0921-5093(94)90975-X

    Article  Google Scholar 

  34. Coleman KK, Newell WF (2007) P91 and Beyond -Welding the new-generation Cr-Mo alloys for high-temperature service. Weld J 86:29–33

    Google Scholar 

  35. Xu H, Xia X, Hua L, Sun Y, Dai Y (2012) Evaluation of hydrogen embrittlement susceptibility of temper embrittled 2.25Cr-1Mo steel by SSRT method. Eng Fail Anal. doi:10.1016/j.engfailanal.2011.08.008

    Google Scholar 

  36. Depover T, Perez Escobar D, Wallaert E, Zermout Z, Verbeken K (2014) Effect of hydrogen charging on the mechanical properties of advanced high strength steels. Int J Hydrog Energ 39:4647–4656. doi:10.1016/j.ijhydene.2013.12.190

    Article  Google Scholar 

  37. Eliaz N, Shachar A, Tal B, Eliezer D (2002) Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels. Eng Fail Anal 9:167–184. doi:10.1016/S1350-6307(01)00009-7

    Article  Google Scholar 

  38. Gojic M, Kosec L, Matkovic P (2003) Embrittlement damage of low alloy Mn-V steel. Eng Fail Anal 10:93–102. doi:10.1016/s1350-6307(02)00038-9

    Article  Google Scholar 

  39. Nelson HG (1983) Hydrogen embrittlement. In: Briant CL, Banerji SK (eds) Treatise on materials science and technology, vol 25. Academic Press, New York, pp 275–359

    Google Scholar 

  40. Beghini M, Benamati G, Bertini L, Valentini R (1998) Effect of hydrogen on tensile properties of martensitic steels for fusion application. J Nucl Mater 9:1295–1299. doi:10.1016/S0022-3115(98)00162-7

    Article  Google Scholar 

  41. Lynch SP (1984) A fractographic study of gaseous hydrogen embrittlement and liquid-metal embrittlement in a tempered-martensitic steel. Acta Metall Mater 32:79–90. doi:10.1016/0001-6160(84)90204-9

    Article  Google Scholar 

  42. Martin ML, Fenske JA, Liu GS, Sofronis P, Robertson IM (2011) On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels. Acta Mater 59:1601–1605. doi:10.1016/j.actamat.2010.11.024

    Article  Google Scholar 

  43. Liua Q, Irwantob B, Atrensa A (2013) The influence of hydrogen on 3.5NiCrMoV steel studied using the linearly increasing stress test. Corros Sci 67:193–202. doi:10.1016/j.corsci.2012.10.019

    Article  Google Scholar 

  44. Pancikiewicz K, Zielinska-Lipiec A, Tasak E (2013) Cracking of high-strength steel welded joints. Adv Mater Sci 13(3):76–85. doi:10.2478/adms-2013-0013

    Google Scholar 

  45. Davies JR (2004) Tensile testing. ASM-International, Materials Park, Ohio, USA

    Google Scholar 

  46. Wongpanya P, Boellinghaus T, Lothongkum G, Hoffmeister H (2009) Numerical modeling of cold cracking initiation and propagation in S 1100 QL steel root welds. Weld World 53:R34–R43. doi:10.1007/bf03266701

    Article  Google Scholar 

  47. Mente T, Boellinghaus T, Schmitz-Niederau M (2012) Heat treatment effects on the reduction of hydrogen in multi-layer high-strength weld joints. Weld World 56:26–36. doi:10.1007/bf03321362

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rhode.

Additional information

Recommended for publication by Commission IX - Behaviour of Metals Subjected to Welding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhode, M., Steger, J., Boellinghaus, T. et al. Hydrogen degradation effects on mechanical properties in T24 weld microstructures. Weld World 60, 201–216 (2016). https://doi.org/10.1007/s40194-015-0285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-015-0285-5

Keywords (IIW Thesaurus)

Navigation