Skip to main content
Log in

Recovery of Valuable Metals from Spent Al2O3-Based Catalysts by Sodium Carbonate Roasting and Water Leaching

  • Recycling End of Life Products Containing Aluminium
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper reports a comprehensive recovery of valuable metals from spent Al2O3-based catalysts using sodium carbonate roasting and water leaching. In all experimental parameters, roasting is one of the most critical influences on the leaching effect. During the roasting of sodium carbonate, insoluble NiAl2O4 and α-Al2O3 are converted to soluble NaAlO2, which can be leached by water. Then, Al, Ni, and V were recovered by leaching solution and residue, respectively. The experimental results showed that Al and V leaching rates were 99.64% and 99.24%, respectively, under the optimal leaching conditions. Moreover, the simple metal composition in the leachate and residue is more favorable for metal recovery than the direct recovery of Al and Ni from the spent Al2O3-based catalyst. Adding Ba(OH)2, which is stoichiometric with V, to the leachate allows the recovery of V first. Subsequently, Al(OH)3 precipitation was obtained by adding the appropriate amount of hydrochloric acid dropwise, and γ-Al2O3 was obtained by calcination. The residue was acid-leached using sulfuric acid again, and after the reaction, Ni(OH)2 was recovered by adding excess NaOH. Ni(OH)2 was heated to a certain temperature to obtain NiO. The recoveries of Al and Ni were 98.68% and 96.31%, respectively, during the whole experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Ding, S. Zhang, B. Liu, H. Zheng, C.C. Chang, and C. Ekberg, Resour. Conserv. Recycl. 141, 284 https://doi.org/10.1016/j.resconrec.2018.10.041 (2019).

    Article  Google Scholar 

  2. S. Huang, J. Liu, C. Zhang, B. Hu, X. Wang, M. Wang, and X. Wang, JOM 71, 4681 https://doi.org/10.1007/s11837-019-03741-z (2019).

    Article  Google Scholar 

  3. M. Razavian, S. Fatemi, and A.T. Najafabadi, J. Environ. Chem. Eng. 8, 103660 https://doi.org/10.1016/j.jece.2020.103660 (2020).

    Article  Google Scholar 

  4. W. Wang, L. Zhang, Y. Han, Y. Zhang, X. Liu, and S. Xu, J. Clean. Prod. 232, 266 https://doi.org/10.1016/j.jclepro.2019.05.375 (2019).

    Article  Google Scholar 

  5. M. Marafi, and A. Stanislaus, Resour. Conserv. Recycl. 52, 859 https://doi.org/10.1016/j.resconrec.2008.02.004 (2008).

    Article  Google Scholar 

  6. J. Willner, A. Fornalczyk, J. Cebulski, and K. Janiszewski, Arch. Metall. Mater. 59, 801 https://doi.org/10.2478/amm-2014-0136 (2014).

    Article  Google Scholar 

  7. M.K. Jha, J. Lee, M. Kim, J. Jeong, B.S. Kim, and V. Kumar, Hydrometallurgy 133, 23 https://doi.org/10.1016/j.hydromet.2012.11.012 (2013).

    Article  Google Scholar 

  8. S. Ilhan and D. Akgün, J. Sustain. Metall. 7, 470 https://doi.org/10.1007/s40831-021-00351-5 (2021).

    Article  Google Scholar 

  9. M. Marafi and A. Stanislaus, Resour. Conserv. Recycl. 53, 1 https://doi.org/10.1016/j.resconrec.2008.08.005 (2008).

    Article  Google Scholar 

  10. M.K. Nazemi and F. Rashchi, Waste Manag. Res. 30, 492 https://doi.org/10.1177/0734242X11417984 (2012).

    Article  Google Scholar 

  11. R. Banda, T.H. Nguyen, S.H. Sohn, and M.S. Lee, Hydrometallurgy 133, 161 https://doi.org/10.1016/j.hydromet.2013.01.006 (2013).

    Article  Google Scholar 

  12. S. Zhao, Z. Liao, Y. Xie, X. Li, Y. Dai, Z. Li, and M. Wang, J. Sustain. Metall. 7, 773 https://doi.org/10.1007/s40831-021-00420-9 (2021).

    Article  Google Scholar 

  13. B. Ghadai, P.C. Rout, D. Mohapatra, B. Padh, and B.Y. Reddy, Hydrometallurgy 191, 105237 https://doi.org/10.1016/j.hydromet.2019.105237 (2020).

    Article  Google Scholar 

  14. V. Ruiz, E. Meux, M. Schneider, and V. Georgeaud, Ind. Eng. Chem. Res. 50, 5307 https://doi.org/10.1021/ie102428r (2011).

    Article  Google Scholar 

  15. Z. Zhao, M. Guo, and M. Zhang, J. Hazard. Mater. 286, 402 https://doi.org/10.1016/j.jhazmat.2014.12.063 (2015).

    Article  Google Scholar 

  16. D.J. Kim, H. Srichandan, C.S. Gahan, and S.W. Lee, Can. Metall. Quart. 51, 403 https://doi.org/10.1179/1879139512Y.0000000031 (2012).

    Article  Google Scholar 

  17. R.M. Gholami, S.M. Borghei, and S.M. Mousavi, Hydrometallurgy 106, 26 https://doi.org/10.1016/j.hydromet.2010.11.011 (2011).

    Article  Google Scholar 

  18. Y. Cai, L. Ma, X. Xi, Z. Nie, and Z. Yang, Hydrometallurgy 208, 105800 https://doi.org/10.1016/j.hydromet.2021.105800 (2022).

    Article  Google Scholar 

  19. B. Dash, I.N. Bhattacharya, B.V. Ramanamurthy, and R.K. Paramguru, Korean J. Chem. Eng. 28, 1546 https://doi.org/10.1016/j.jhazmat.2021.125849 (2011).

    Article  Google Scholar 

  20. M.N. Le and M.S. Lee, Miner Process. Extr. Metall. Rev. 42, 335 https://doi.org/10.1080/08827508.2020.1726914 (2021).

    Article  Google Scholar 

  21. S.P. Barik, K.H. Park, P.K. Parhi, and J.T. Park, Hydrometallurgy 111, 46 https://doi.org/10.1016/j.hydromet.2011.10.001 (2012).

    Article  Google Scholar 

  22. T.H. Nguyen and M.S. Lee, J. Clean. Prod. 90, 388 https://doi.org/10.1016/j.jclepro.2014.11.048 (2015).

    Article  Google Scholar 

  23. Y.C. Lai, W.J. Lee, K.L. Huang, and C.M. Wu, J. Hazard. Mater. 154, 588 https://doi.org/10.1016/j.jhazmat.2007.10.061 (2008).

    Article  Google Scholar 

  24. J.Z. Wang, S.N. Wang, A. Olayiwola, N. Yang, B. Liu, J. Weigand, M. Wenzel, and H. Du, J. Hazard. Mater. 416, 125849 https://doi.org/10.1016/j.jhazmat.2021.125849 (2021).

    Article  Google Scholar 

  25. H.R. Kim, J.Y. Lee, and J.S. Kim, Korean Inst. Resour. Recycl. 21, 65 https://doi.org/10.7844/kirr.2012.21.6.65 (2012).

    Article  Google Scholar 

  26. X. Ye, S. Guo, W. Qu, S. Xu, L. Zhang, B. Liu, L. Wang, and C. Wang, J. Taiwan Inst. Chem. E. 97, 146 https://doi.org/10.1016/j.jtice.2019.01.009 (2019).

    Article  Google Scholar 

  27. H. Li, Y. Feng, H. Wang, H. Li, and H. Wu, Sep. Purif. Technol. 248, 117135 https://doi.org/10.1016/j.seppur.2020.117135 (2020).

    Article  Google Scholar 

  28. N. Kayal and N. Singh, Chem. Central J. 1, 1 https://doi.org/10.1186/1752-153X-1-24 (2007).

    Article  Google Scholar 

  29. J.A. Addlestone, J. Phys. Chem. 42, 437 https://doi.org/10.1021/j100898a014 (2002).

    Article  Google Scholar 

  30. L. Zhou, L. Li, N. Wei, and J. Li, ChemCatChem 7, 2508 https://doi.org/10.1002/cctc.201500379 (2015).

    Article  Google Scholar 

  31. I.S.S. Pinto and H.M.V.M. Soares, Hydrometallurgy 129, 19 https://doi.org/10.1016/j.hydromet.2012.08.008 (2012).

    Article  Google Scholar 

  32. J.W. Kim and H.G. Lee, Metall. Mater. Trans. B. 32, 17 https://doi.org/10.1007/s11663-001-0003-0 (2001).

    Article  Google Scholar 

  33. I.H. Choi, H.R. Kim, G. Moon, R.K. Jyothi, and J.Y. Lee, Hydrometallurgy 175, 292 https://doi.org/10.1016/j.hydromet.2017.12.010 (2018).

    Article  Google Scholar 

  34. M. Li, B. Liu, S.L. Zheng, S.N. Wang, H. Du, D.B. Dreisinger, and Y. Zhang, J. Clean. Prod. 149, 206 https://doi.org/10.1016/j.jclepro.2017.02.093 (2017).

    Article  Google Scholar 

  35. Y. Chen, Q. Feng, G. Zhang, L. Ou, and Y. Lu, Min. Metall. Explor. 24, 30 https://doi.org/10.1007/BF03403355 (2007).

    Article  Google Scholar 

  36. W. Huang, G. Liu, X. Li, T. Qi, Q. Zhou, and Z. Peng, Mater. Lett. 277, 128361 https://doi.org/10.1016/j.matlet.2020.128361 (2020).

    Article  Google Scholar 

  37. L.L. Zhang, Y.S. Wu, L.N. Zhang, Y.Z. Wang, and M.C. Li, Vacuum 133, 1 https://doi.org/10.1016/j.vacuum.2016.08.005 (2016).

    Article  Google Scholar 

  38. M. Marafi and A. Stanislaus, Catal. Today 178, 117 https://doi.org/10.1016/j.catto.2011.07.001 (2011).

    Article  Google Scholar 

  39. P.F. Xian, S.F. Zhou, M.Y. Wang, X.W. Wang, and B.F. Chen, Trans. Nonferrous Metals Soc. 27, 220 https://doi.org/10.1016/S1003-6326(17)60025-6 (2017).

    Article  Google Scholar 

  40. P. Lu, F. Liu, D.F. Xue, H. Yang, and Y.N. Liu, Electrochim. Acta 78, 1 https://doi.org/10.1016/j.electacta.2012.03.183 (2012).

    Article  Google Scholar 

  41. D. Peddis, S. Laureti, M.V. Mansilla, E. Agostinelli, G. Varvaro, C. Cannas, and D. Fiorani, Superlattices Microstruct. 46, 125 https://doi.org/10.1016/j.spmi.2008.10.042 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Liaoning Province Applied Basic Research Program Project 2023JH2/101300245, the National Natural Science Foundation of China (Grant No. 51974188), the Liaoning Revitalization Talents Program (Grant Nos. XLYC2008014), the Young Teachers Research Ability Cultivation Fund of Shenyang University of Technology (Grant No. QNPY202104), the Key Research Project Fund of Shenyang University of Technology (Grant No. X202167084), and Shenyang major scientific and technological achievements transformation special project (Grant Number 20-203-5-19).

Author information

Authors and Affiliations

Authors

Contributions

LL and YW developed the research direction and experimental plan. XL performed the experiments, obtained the experimental data, and wrote the first draft. JT revised the first draft. All participants were involved in the analysis of the experimental results and the revision of the manuscript.

Corresponding authors

Correspondence to Junjie Tang or Laishi Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 627 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Tang, J., Li, L. et al. Recovery of Valuable Metals from Spent Al2O3-Based Catalysts by Sodium Carbonate Roasting and Water Leaching. JOM 75, 4689–4700 (2023). https://doi.org/10.1007/s11837-023-05912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05912-5

Navigation