Skip to main content
Log in

Selective Recovery of Molybdenum from Petroleum Industry Waste Spent Hydrodesulfurization Mo–Co–Ni/Al2O3 Catalyst in the Presence of Ammonia: Process Optimization and Kinetic Studies

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Composite catalysts containing molybdenum are mostly used for the purpose of hydrogenation in the oil refining industries. These treatment processes leave behind a large amount of used catalyst. These worn-out catalysts can be a secondary source of metal recovery for molybdenum and increase environmental awareness. In this paper, molybdenum recovery from worn-out catalysts has been investigated by leaching method in alkali medium (ammonia, NH3) after roasting process. The experimental data indicate that the roasting temperature and period, leaching temperature and duration are highly effective on the dissolution yield of molybdenum. The maximum dissolution rates of molybdenum (92.12%) was reached under optimum leaching conditions; roasting temperature, 600°C; roasting time, 120 min; particle size, +75–30 µm; liquid/solid ratio, 6 mL/g; ammonia concentration, 1 M; leaching temperature, 80°C; leaching time, 90 min and stirring speed, 400 r/min. Kinetic results indicate that the dissolution reactions of molybdenum is controlled by the liquid film diffusion mechanism. Activation energy value (Ea) of molybdenum was found to be as 10.89 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Akcil, A.F., Vegliò, F., Ferella, F., Okudan, M.D., and Tuncuk, A., Waste Manage., 2015, vol. 45, p. 420. https://doi.org/10.1016/j.wasman.2015.07.007

    Article  CAS  Google Scholar 

  2. Marafi, M. and Stanislaus, J. Hazard. Mater., 2003, vol. 101, no. 2, p. 123. https://doi.org/10.1016/S0304-3894(03)00145-6

    Article  CAS  PubMed  Google Scholar 

  3. Marafi, M. and Stanislaus, A., Resour. Conserv. Recycl., 2008, vol. 52, no. 6, p. 859. https://doi.org/10.1016/j.resconrec.2008.02.004

    Article  Google Scholar 

  4. Marafi, M. and Stanislaus, A., Resour. Conserv. Recycl., 2008, vol. 53, no. 1–2, p. 1. https://doi.org/10.1016/j.resconrec.2008.08.005

    Article  Google Scholar 

  5. Dufresne, P., Appl. Catal. A: Gen., 2007, vol. 322, p. 67. https://doi.org/10.1016/j.apcata.2007.01.013

    Article  CAS  Google Scholar 

  6. Liu, C., Yu, Y., and Zhao, H., Fuel Process. Technol., 2005, vol. 86, no. 4, p. 449. https://doi.org/10.1016/j.fuproc.2004.05.002

    Article  CAS  Google Scholar 

  7. Asghari, I., Mousavi, S.M., Amiri, F., and Tavassoli, S., J. Ind. Eng. Chem., 2013, vol. 19, no. 4, p. 1069. https://doi.org/10.1016/j.jiec.2012.12.005

    Article  CAS  Google Scholar 

  8. Macaskie, L.E., Mikheenko, I.P., Yong, P., Deplanche, K., Murray, A.J., Paterson-Beedle, M., and Vaughan, D., Hydrometallurgy, 2010, vol. 104, nos. 3–4, p. 483. https://doi.org/10.1016/j.hydromet.2010.01.018

    Article  CAS  Google Scholar 

  9. Pradhan, J.K. and Kumar, S., Waste Manage. Res., 2012, vol. 30, no. 11, p. 1151. https://doi.org/

    Article  Google Scholar 

  10. Marafi, A., Fukase, S., Al-Marri, M., and Stanislaus, A., Energy Fuels, 2003, vol. 17, no. 3, p. 661. https://doi.org/10.1021/ef020177+

    Article  CAS  Google Scholar 

  11. Arslanoğlu, H. and Yaraş, A., Petrol. Sci. Technol., 2019, vol. 37, no. 19, p. 2081. https://doi.org/10.1080/10916466.2019.1618867

    Article  CAS  Google Scholar 

  12. Yaraş, A. and Arslanoğlu, H., Sep. Sci. Technol., 2020, vol. 55, no. 11, p. 2037. https://doi.org/10.1080/01496395.2019.1673412

    Article  CAS  Google Scholar 

  13. Motaghed, M., Mousavi, S.M., Rastegar, S.O., and Shojaosadati, S.A., Bioresour. Technol., 2014, vol. 171, p. 401. https://doi.org/10.1016/j.biortech.2014.08.032

    Article  CAS  PubMed  Google Scholar 

  14. Mishra, D., Chaudhury, G.R., Kim, D.J., and Ahn, J.G., Hydrometallurgy, 2010, vol. 101, nos. 1–2, p. 35. https://doi.org/10.1016/j.hydromet.2009.11.016

    Article  CAS  Google Scholar 

  15. Mohapatra, D.and Park, K.H., J. Environ. Sci. Heal. Part A, 2007, vol. 42, no. 4, p. 507. https://doi.org/10.1080/10934520601188409

    Article  CAS  Google Scholar 

  16. Chaudhary, A.J., Donaldson, J.D., Boddington, S.C., and Grimes, S.M., Hydrometallurgy, 1993, vol. 34, no. 2, p. 137. https://doi.org/10.1016/0304-386X(93)90031-8

    Article  CAS  Google Scholar 

  17. Ognyanova, A., Ozturk, A.T., De Michelis, I., Ferella, F., Taglieri, G., Akcil, A., and Vegliò, F., Hydrometallurgy, 2009, vol. 100, nos. 1–2, p. 20. https://doi.org/10.1016/j.hydromet.2009.09.009

    Article  CAS  Google Scholar 

  18. Visaliev, M.Y., Shpirt, M.Y., Kadiev, K.M., Dvorkin, V.I., Magomadov, E.E., and Khadzhiev, S.N., Solid Fuel Chem., 2012, vol. 46, no. 2, p. 100. https://doi.org/10.3103/S0361521912020127

    Article  CAS  Google Scholar 

  19. Arslanoğlu, H. and Yaraş, A., Petrol. Sci. Technol., 2019, vol. 37, no. 19, p. 2081. https://doi.org/10.1080/10916466.2019.1618867

    Article  CAS  Google Scholar 

  20. Ferella, F., Ognyanova, A., De Michelis, I., Taglieri, G., and Vegliò, F., J. Hazard. Mater., 2011, vol. 192, no. 1, p. 176. https://doi.org/10.1016/j.jhazmat.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  21. Yaraş, A. and Arslanoğlu, H., Can. Metall. Quart., 2018, vol. 57, no. 3, p. 319. https://doi.org/10.1080/00084433.2018.1473136

    Article  CAS  Google Scholar 

  22. Arslanoğlu, H. and Yaraş, A., Trans. Indian Inst. Met., 2020, vol. 73, no. 3, p. 785. https://doi.org/10.1007/s12666-020-01896-x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Arslanoğlu.

Ethics declarations

The author declares that there are no conflicts of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslanoğlu, H. Selective Recovery of Molybdenum from Petroleum Industry Waste Spent Hydrodesulfurization Mo–Co–Ni/Al2O3 Catalyst in the Presence of Ammonia: Process Optimization and Kinetic Studies. Pet. Chem. 61, 198–205 (2021). https://doi.org/10.1134/S0965544121020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121020043

Keywords:

Navigation