Skip to main content
Log in

Effect of Electromagnetic Flow Direction on Grain Refinement of Al 2024 Alloy

  • Advances in Grain Refinement during Solidification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the present study, molten Al 2024 alloy was subjected to two different electromagnetic flow directions, i.e., (1) irreversible clockwise (CW) and (2) reversible clockwise–anticlockwise (CW-ACW) direction rotational magnetic fields (RMF) at constant and varying intervals. The construction allows the aluminum melt to solidify in the TP-1 mold under a combination of directional solidification with a forced convection mechanism. With the help of computer-based simulation, secondary flow and variation in temperature profiles have been evaluated. The effect of the electromagnetic stirring current and pouring temperature on the microstructural morphology of the Al 2024 alloy has been analyzed by experimental work. It was found that at a low pouring temperature (913 K) with an increase in current value (6–9 A), when CW-ACW RMF is applied, the grain size of the sample was finer compared to the CW RMF. In contras, at higher pouring temperatures (943–993 K) and the same current value, better grain size refinement was observed in the case of the CW RMF samples. However, deviation in the grain refinement trend was observed at a current of 11 A at low and higher pouring temperature. The best grain refinement was achieved at a pouring temperature of 993 K with a 7.5-A current in an irreversible direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Zhang, W. Li, and J.P. Yao, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2012.10.185 (2013).

    Article  Google Scholar 

  2. Z. Huda and T. Zaharinie, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2008.11.071 (2009).

    Article  Google Scholar 

  3. J.C. Malas, S. Venugopal, and T. Seshacharyulu, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2003.09.078 (2004).

    Article  Google Scholar 

  4. B. Rahimi, H. Khosravi, and M. Haddad-Sabzevar, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-015-1044-8 (2015).

    Article  Google Scholar 

  5. A. Minagawa, K. Takahashi, and S. Shimasaki, Miner. Met. Mater. Ser. https://doi.org/10.1007/978-3-030-05864-7-121 (2019).

    Article  Google Scholar 

  6. K. Matsuda, T. Takehara, M. Yang, H. Uno, T. Kubo, G. Miyano, and M. Yoshida, Metall. Mater. Trans. A Phys. Metall. Mater. https://doi.org/10.1007/s11661-016-3377-y (2016).

    Article  Google Scholar 

  7. H. Luo, W. Jie, Z. Gao, and Y. Zheng, Trans. Nonferrous Met. Soci. China. https://doi.org/10.1016/S1003-6326(18)64738-7 (2018).

    Article  Google Scholar 

  8. V. Metan and K. Eigenfeld, Eur. Phys. J. Spec. Top. https://doi.org/10.1140/epjst/e2013-01803-6 (2013).

    Article  Google Scholar 

  9. T.W. Kim, S.M. Lee, C.G. Kang, and B.M. Kim, Int J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-007-1331-2 (2009).

    Article  Google Scholar 

  10. P. Kaur, D.K. Dwivedi, and P.M. Pathak, Int. J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-012-3921-x (2012).

    Article  Google Scholar 

  11. B.I. Jung, C.H. Jung, T.K. Han, and Y.H. Kim, J. Mater. Process. Technol. https://doi.org/10.1016/S0924-0136(01)00514-3 (2001).

    Article  Google Scholar 

  12. W.D. Griffiths and D.G. McCartney, Mater. Sci. Eng. A. https://doi.org/10.1016/S0921-5093(96)10527-X (1997).

    Article  Google Scholar 

  13. W.D. Griffiths and D.G. McCartney, Mater. Sci. Eng. A. https://doi.org/10.1016/0921-5093(96)10392-0 (1996).

    Article  Google Scholar 

  14. I.G. Chung, A. Bolouri, and C.G. Kang, Int. J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-011-3376-5 (2012).

    Article  Google Scholar 

  15. H. Li, S. Liu, J. Jie, L. Guo, H. Chen, and T. Li, Int. J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-017-0724-0 (2017).

    Article  Google Scholar 

  16. C.G. Kang, J.W. Bae, and B.M. Kim, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2006.11.181 (2007).

    Article  Google Scholar 

  17. C.G. Kang and S.M. Lee, Int. J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-007-1242-2 (2008).

    Article  Google Scholar 

  18. E.J. Zoqui, M. Paes, and E.S. Sadiqi, J. Mater. Process. Technol. https://doi.org/10.1016/S0924-0136(01)01148-7 (2002).

    Article  Google Scholar 

  19. T. Guan, Z. Zhang, Y. Bai, M. He, H. Zheng, H. Zhao, and X. Li, Mater. MDPI. https://doi.org/10.3390/ma12010022 (2018).

    Article  Google Scholar 

  20. W. Mao, H. Lin, Y. Bai, and S. Gao, J .Univ. Sci. Technol. Beijing. https://doi.org/10.1016/S1005-8850(07)60012-7 (2007).

    Article  Google Scholar 

  21. M. Paes, E.G. Santos, and E.J. Zoqui, Metall. Trans. B 19, 2 (1989).

    Google Scholar 

  22. C. Vives, Metall. Trans. B. https://doi.org/10.1007/BF02655919 (1989).

    Article  Google Scholar 

  23. S. Eckert, P.A. Nikrityuk, B. Willers, D. Rabiger, N. Shevchenko, H. Neumann-Heyme, V. Travnikov, S. Odenbach, A. Voigt, and K. Eckert, Eur. Phys. J. Spec. Top. https://doi.org/10.1140/epjst/e2013-01802-7 (2013).

    Article  Google Scholar 

  24. P.A. Nikrityuk, K. Eckert, and R.A. Grundmann, Int. J. Heat Mass Trans. https://doi.org/10.1016/j.ijheatmasstransfer.2005.08.035 (2006).

    Article  Google Scholar 

  25. B. Willers, S. Eckert, P.A. Nikrityuk, and K. Eckert, Modeling of casting, in Welding, and Advanced Solidification Processes-XI. ed. by C.-A. Gandin, and M. Bellot (TMS, Warrendale PA, 2006), pp. 333–40.

    Google Scholar 

  26. S. Steinbach and L. Ratke, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2005.09.010 (2005).

    Article  Google Scholar 

  27. S. Eckert, P.A. Nikrityuk, D. Rabiger, K. Eckert, and G. Gerbeth, Metall. Mater. Trans. B. https://doi.org/10.1007/s11663-008-9126-x (2007).

    Article  Google Scholar 

  28. M. Ungarish, J. Fluid Mech. https://doi.org/10.1017/S0022112097006605 (1997).

    Article  MathSciNet  Google Scholar 

  29. P.A. Nikrityuk, M. Ungarish, K. Eckert, and R. Grundmann, Phys. Fluid. https://doi.org/10.1063/1.1897323 (2005).

    Article  Google Scholar 

  30. P.A. Nikrityuk, S. Eckert, and K. Eckert, Eur. J. Mech. B Fluid. https://doi.org/10.1016/j.euromechflu.2007.05.004 (2008).

    Article  Google Scholar 

  31. M. Li, T. Tamura, N. Omura, Y. Murakami, and S. Tada, J. Mater. Proc. Technol. https://doi.org/10.1016/j.jmatprotec.2016.04.024 (2016).

    Article  Google Scholar 

  32. B. Willers, S. Eckert, P.A. Nikrityuk, D. Rabiger, J. Dong, K. Eckert, and G. Gerbeth, Metall. Mater. Trans. B. https://doi.org/10.1007/s11663-008-9126-x (2008).

    Article  Google Scholar 

  33. H. Wei, F. Xia, S. Qian, and M. Wang, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2016.10.012 (2017).

    Article  Google Scholar 

  34. T.Y. Guan, Z.F. Zhang, Y.L. Bai, and P. Wang, Mater. Sci. Forum. https://doi.org/10.4028/www.scientific.net/MSF.898.24 (2017).

    Article  Google Scholar 

  35. Y.B. Zuo, J.Z. Cui, M.O.U. Dan, Q.F. Zhu, X.J. Wang, and L.I. Lei, Trans. Nonferrous Met. Soc. China. https://doi.org/10.1016/S1003-6326(14)63364-1 (2014).

    Article  Google Scholar 

  36. A. Kundu, D. Patel, P. Biswas, S. Ranjan, A. Mallik, and S. Das, Trans. Indian Inst. Met. https://doi.org/10.1007/s12666-021-02269-8 (2021).

    Article  Google Scholar 

  37. ANSYS, Maxwell 2D User’s Guide (Ver. 14) (Ansys Inc, Canonsburg, 2010), p. 1–565.

  38. ANSYS, Ansys Fluent Magnetohydrodynamics (MHD) Module Manual (Ver. 15) (Ansys Inc, Canonsburg, 2013), p. 1–35.

  39. A. Maurya, R. Kumar, and P.K. Jha, J. Manuf. Process. https://doi.org/10.1016/j.jmapro.2020.11.003 (2020).

    Article  Google Scholar 

  40. L.B. Trindade, J.E.A. Nadalon, A.C. Contini, and R.C. Barroso, Steel Res. Int. https://doi.org/10.1002/srin.201600319 (2017).

    Article  Google Scholar 

  41. Z. Liu, W.M. Mao, and Z.D. Zhao, Trans. Nonferrous Met. Soc. China. https://doi.org/10.1016/S1003-6326(06)60013-7-76 (2006).

    Article  Google Scholar 

  42. S. Tzamtzis, BCAST (WL) (Brunel University at West London, London, 2011).

    Google Scholar 

  43. A.F. Ferreira, W.B. Chrisostimo, R.C. Sales, W.J.L. Garcao, and N. de Paula-Sousa, Int. J. Adv. Manuf. Technol. 104, 957 https://doi.org/10.1007/s00170-019-03979-6 (2019).

    Article  Google Scholar 

  44. J. Zou, H. Zhang, Z. Wu, J. Wang, B. Li, J. Cui, H. Nagaumi, and Y. Li, J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2021.07.039 (2021).

    Article  Google Scholar 

  45. Y.L. Bai, J. Xu, Z.F. Zhang, and L.K. Shi, Trans. Nonferrous Met. Soc. China. https://doi.org/10.1016/S1003-6326(10)60103-3 (2009).

    Article  Google Scholar 

  46. S. Nafisi, D. Emadi, M.T. Shehata, and R. Ghomashchi, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2006.05.076 (2006).

    Article  Google Scholar 

  47. T. Chandrashekar, M.K. Muralidhara, K.T. Kashyap, and P.R. Rao, Int. J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-007-1336-x (2009).

    Article  Google Scholar 

  48. M.C. Flemings, Metall. Mater. Trans. B. https://doi.org/10.1007/BF02643923 (1974).

    Article  Google Scholar 

  49. A. Hellawell, in Proceedings of the Fourth International Conference on Semi- Solid Processing of Alloys and Composites (Sheffield, England, 1996), p. 60

  50. R.D. Doherty, H.I. Lee, and E.A. Feest, Mater. Sci. Eng. A. https://doi.org/10.1016/0025-5416(84)90211-8 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to National institute of technology, Raipur for providing lab facilities to conduct the research experiment and very thankful to the technical assistant Mr. Santosh Nagwanshi from the Department of Metallurgical and Materials Engineering, NIT Raipur, for helping us during casting processes.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Das.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 247 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Biswas, P., Sahu, M. et al. Effect of Electromagnetic Flow Direction on Grain Refinement of Al 2024 Alloy. JOM 75, 2799–2817 (2023). https://doi.org/10.1007/s11837-023-05907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05907-2

Navigation