Skip to main content
Log in

Microstructural characteristics and mechanical properties of Al-2024 alloy processed via a rheocasting route

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

This article reports the effects of stirring speed and T6 heat treatment on the microstructure and mechanical properties of Al-2024 alloy synthesized by a rheocasting process. There was a decrease in grain size of α-Al particles corresponding to an increase in stirring speed. By increasing the stirring speed, however, the globularity of matrix particles first increased and then declined. It was also found that the hardness, compressive strength, and compressive strain increased with the increase of stirring speed. Microstructural studies revealed the presence of nonsoluble Al15(CuFeMn)3Si2 phase in the vicinity of CuAl2 in the rheocast samples. The required time for the solution treatment stage was also influenced by stirring speed; the solution treatment time decreased with the increase in stirring speed. Furthermore, the rheocast samples required a longer homogenization period compared to conventionally wrought alloys. Improvements in hardness and compressive properties were observed after T6 heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Spencer, R. Mehrabian, and M.C. Flemings, Rheological behavior of Sn-15 pct Pb in the crystallization range, Metall. Trans., 3(1972), No. 7, p. 1925.

    Article  Google Scholar 

  2. H.M. Guo, X.B. Liu, X.J. Yang, A.S. Zhang, and Y. Liu, Microstructure evolution behavior of AlSi9Cu3 alloy during rheocasting, Trans. Nonferrous Met. Soc. China, 20(2010), p. 815.

    Article  Google Scholar 

  3. H. Mirzadeh and B. Niroumand, Effects of rheocasting parameters on the microstructure of rheo-centrifuged cast Al-7.1wt%Si alloy, J. Alloys Compd., 474(2009), No. 1–2, p. 257.

    Article  Google Scholar 

  4. P. Falak and B. Niroumand, Rheocasting of an Al-Si alloy, Scripta Mater., 53(2005), No. 1, p. 53.

    Article  Google Scholar 

  5. H. Nakato, M. Oka, S. Itoyama, M. Urata, T. Kawasaki, K. Hashiguchi, and S. Okano, Continuous semi-solid casting process for aluminum alloy billets, Mater. Trans., 43(2002), No. 1, p. 24.

    Article  Google Scholar 

  6. Z. Fan, X. Fang, and S. Ji, Microstructure and mechanical properties of rheo-diecast (RDC) aluminium alloys, Mater. Sci. Eng. A, 412(2005), No. 1–2, p. 298.

    Article  Google Scholar 

  7. P.A. Joly and R. Mehrabian, The rheology of a partially solid alloy, J. Mater. Sci., 11(1976), p. 1393.

    Article  Google Scholar 

  8. M. Reisi and B. Niroumand, Effects of stirring parameters on rheocast structure of Al-7.1wt.%Si alloy, J. Alloys Compd., 470(2009), p. 413.

    Article  Google Scholar 

  9. B. Niroumand and K. Xia, 3D study of the structure of primary crystals in a rheocast Al-Cu alloy, Mater. Sci. Eng. A, 283(2000), No. 1–2, p. 70.

    Article  Google Scholar 

  10. Z. Fan, Semisolid metal processing, Int. Mater. Rev., 47(2002), No. 2, p. 49.

    Article  Google Scholar 

  11. T. Haga and P. Kapranos, Thixoforming of laminate made from semisolid cast strips, J. Mater. Process. Technol., 157–158(2004), p. 508.

    Article  Google Scholar 

  12. A. Hekmat-Ardakan and F. Ajersch, Effect of conventional and rheocasting processes on microstructural characteristics of hypereutectic Al-Si-Cu-Mg alloy with variable Mg content, J. Mater. Process. Technol., 210(2010), No. 5, p. 767.

    Article  Google Scholar 

  13. P.K. Seo, D.U. Kim, and C.G. Kang, The characteristics of grain size controlled microstructure and mechanical properties of Al-Si alloy by thixocasting and rheocasting process, J. Mater. Process. Technol., 162–163(2005), p. 570.

    Article  Google Scholar 

  14. T. Haga and P. Kapranos, Simple rheocasting processes, J. Mater. Process. Technol., 130–131(2002), p. 594.

    Article  Google Scholar 

  15. Z.H. Bai, F. Qiu, X.X. Wu, Y.Y. Liu, and Q.C. Jiang, Age hardening and creep resistance of cast Al-Cu alloy modified by praseodymium, Mater. Charact., 86(2013), p. 185.

    Article  Google Scholar 

  16. A.K. Dey, P. Poddar, K.K. Singh, and K.L. Sahoo, Mechanical and wear properties of rheocast and conventional gravity die cast A356 alloy, Mater. Sci. Eng. A, 435–436(2006), p. 521.

    Article  Google Scholar 

  17. U.A. Curle, Semi-solid near-net shape rheocasting of heat treatable wrought aluminum alloys, Trans. Nonferrous Met. Soc. China, 20(2010), No. 9, p. 1719.

    Article  Google Scholar 

  18. N. Mahathaninwong, T. Plookphol, J. Wannasin, and S. Wisutmethangoon, T6 heat treatment of rheocasting 7075 Al alloy, Mater Sci Eng A, 532(2012), p. 91–99.

    Article  Google Scholar 

  19. S.L. Lü, S.S. Wu, L. Wan, and P. An, Microstructure and tensile properties of wrought Al alloy 5052 produced by rheo-squeeze casting, Metall. Mater. Trans. A, 44(2013), No. 6, p. 2735.

    Article  Google Scholar 

  20. ASM International Handbook Committee, ASM Metals Handbook, Vol. 15, Casting, ASM International, The Materials Information Company, 1991.

    Google Scholar 

  21. J.D. Seidt and A. Gilat, Plastic deformation of 2024-T351 aluminum plate over a wide range of loading conditions, Int. J. Solids Struct., 50(2013), No. 10, p. 1781.

    Article  Google Scholar 

  22. J.C. Malas, S. Venugopal, and T. Seshacharyulu, Effect of microstructural complexity on the hot deformation behavior of aluminum alloy 2024, Mater. Sci. Eng. A, 368(2004), No. 1–2, p. 41.

    Article  Google Scholar 

  23. A.K. Gupta, B.K. Prasad, R.K. Pajnoo, and S. Das, Effects of T6 heat treatment on mechanical, abrasive and erosive-corrosive wear properties of eutectic Al-Si alloy, Trans. Nonferrous Met. Soc. China, 22(2012), No. 5, p. 1041.

    Article  Google Scholar 

  24. I. Aguilera Luna, H. Mancha Molinar, M.J. Castro Román, J.C. Escobedo Bocardo, and M. Herrera Trejo, Improvement of the tensile properties of an Al-Si-Cu-Mg aluminum industrial alloy by using multi stage solution heat treatments, Mater. Sci. Eng. A, 561(2013), p. 1.

    Article  Google Scholar 

  25. Y. Birol, Response to artificial ageing of dendritic and globular Al-7Si-Mg alloys, J. Alloys Compd., 484(2009), No. 1–2, p. 164.

    Article  Google Scholar 

  26. P.K. Seo and C.G. Kang, The effect of raw material fabrication process on microstructural characteristics in reheating process for semi-solid forming, J. Mater. Process. Technol., 162–163(2005), p. 402.

    Article  Google Scholar 

  27. R.A. Martinez and M.C. Flemings, Evolution of particle morphology in semisolid processing, Metall. Mater. Trans. A, 36(2005), No. 8, p. 2205.

    Article  Google Scholar 

  28. ASM International Handbook Committee, ASM Metals Handbook, Vol. 4, Heat Treating, ASM International, The Materials Information Company, 1991.

    Google Scholar 

  29. E.J. Zoqui and M.H. Robert, Structural modifications in rheocast Al-Cu alloys by heat treatment and implications on mechanical properties, J. Mater. Process. Technol., 78(1998), No. 1–3, p. 198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Khosravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, B., Khosravi, H. & Haddad-Sabzevar, M. Microstructural characteristics and mechanical properties of Al-2024 alloy processed via a rheocasting route. Int J Miner Metall Mater 22, 59–67 (2015). https://doi.org/10.1007/s12613-015-1044-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1044-8

Keywords

Navigation