Skip to main content
Log in

Investigation of Fluoride Evaporation from CaF2-CaO-Al2O3-MgO-TiO2-(Na2O) Slag for Electroslag Remelting

  • Design, Production, and Applications of Steels for a Sustainable Future
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Avoiding evaporation and environmental pollution for electroslag remelting slag with high fluoride content is difficult. In this study, the evaporation mechanism of fluorine was investigated by thermodynamic calculation, non-isothermal thermogravimetric analysis, and the establishment of a kinetic model to study different Na2O contents from CaF2-CaO-Al2O3-MgO-TiO2-(Na2O) slag. The results show that CaF2 is the main evaporation substance, followed by NaF, and contains a small amount of MgF2 and AlOF, and the weight of AlF3 can be ignored. Increasing Na2O from 0 wt.% to 6.6 wt.% reduces the onset temperature of CaF2 evaporation by 100–150°C and evaporation of MgF2 and NaF by 50°C and 100°C, respectively. With rising temperature, the fluoride evaporation ratio rises. With an increase in Na2O content from 0 to 6.6 wt.%, the evaporation ratio rises from 0.76% to 1.69%. The Anti-Jander mechanism, which is referred to as three-dimensional diffusion, seems to control evaporation. The activation energy E ranges from 73.66 kJ/mol to 91.05 kJ/mol and the apparent pre-exponential factor A ranges from 9.70 × 10–3  s−1 to 5.47 × 10–2 s−1 in the associated kinetic mechanism function, G(α) = [(1 − α)1/3 − 1]2. Increased Na2O encourages Na+ migration, which in turn boosts diffusion. Rate-controlling steps are chemical reactions 1 and 2 and mass transfer in liquid slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Schwenk and B. Friedrich, Role and effects of slag components in ESR processes. Paper presented at the ALD's 7th VIM/ESR/VAR-Workshop, Hanau, Germany, September 2016.

  2. D.L. Zheng, J. Li, C.B. Shi, and J.T. Ju, Metall. Mater. Trans. B 50, 1148 (2019).

    Article  Google Scholar 

  3. X.H. Wang, Y. Li, C. Yan, B.Y. Ma, and J. Zeng, J. Manuf. Sci. Prod. 13, 73 (2013).

    Google Scholar 

  4. X.J. Wang, Y. Liu, G.Q. Li, Q. Wang, T.F. Li, and Y.X. Cao, Vacuum 185, 109997 (2021).

    Article  Google Scholar 

  5. C.B. Shi, J.W. Cho, D.L. Zheng, and J. Li, Int. J. Miner. Metall. Mater. 23, 627 (2016).

    Article  Google Scholar 

  6. Y.H. Feng, X.G. Jiang, and D.Z. Chen, J. Hazard. Mater. 308, 91 (2016).

    Article  Google Scholar 

  7. J.X. Gao, G.H. Wen, Q. Liu, W.F. Tan, P. Tang, and J. Non-Cryst, Solids 409, 8 (2015).

    Google Scholar 

  8. W.H. Li, Z.Y. Ma, J.H. Yan, Q.X. Huang, and X.G. Jiang, J. Zhejiang Univ. Sci. A 20, 564 (2019).

    Article  Google Scholar 

  9. Y.H. Feng, X.G. Jiang, Y. Chi, X.D. Li, and H.M. Zhu, Environ. Sci. Technol. 46, 307 (2012).

    Article  Google Scholar 

  10. L.J. Zhou, W.L. Wang, and K.C. Zhou, ISIJ Int. 55, 1916 (2015).

    Article  Google Scholar 

  11. J. Wei, W.L. Wang, L.J. Zhou, D.Y. Huang, H. Zhao, and F.J. Ma, Metall. Mater. Trans. B 45, 643 (2013).

    Article  Google Scholar 

  12. T. Kargul, J. Therm. Anal. Calorim. 139, 877 (2020).

    Article  Google Scholar 

  13. E. Brandaleze, M. Valentini, L. Santini, and E. Benavidez, J. Therm. Anal. Calorim. 133, 271 (2018).

    Article  Google Scholar 

  14. M. Persson, S. Seetharaman, and S. Seetharaman, ISIJ Int. 47, 1711 (2007).

    Article  Google Scholar 

  15. J. Li, W.L. Wang, J. Wei, D.Y. Huang, and H. Matsuura, ISIJ Int. 52, 2220 (2012).

    Article  Google Scholar 

  16. Y.R. Cui, H.Y. Fan, Z.L. Guo, G.H. Wang, X.M. Li, J.X. Zhao, and Z. Yang, J. Iron Steel Res. Int. 26, 412 (2019).

    Article  Google Scholar 

  17. S. Sukenaga, S. Haruki, Y. Nomoto, N. Saito, and K. Nakashima, ISIJ Int. 51, 1285 (2011).

    Article  Google Scholar 

  18. G.H. Zhang, W.W. Zheng, and K.C. Chou, Metall. Mater. Trans. B 48, 1134 (2017).

    Article  Google Scholar 

  19. M. Li, T. Utigard, and M. Barati, Metall. Mater. Trans. B 46, 74 (2014).

    Article  Google Scholar 

  20. Z.F. Tong, J.L. Qiao, and X.Y. Jiang, Ironmak. Steelmak. 44, 237 (2016).

    Article  Google Scholar 

  21. M.S. Seo, and I. Sohn, J. Am. Ceram. Soc. 105, 6320 (2022).

    Article  Google Scholar 

  22. L. Zhang, B.Y. Zhai, W.L. Wang, and I. Sohn, J. Sustain. Metall. 7, 559 (2021).

    Article  Google Scholar 

  23. L. Brewer, and J. Margrave, J. Phys. Chem. 59, 421 (1955).

    Article  Google Scholar 

  24. M.O. Suk, and J.H. Park, J. Am. Ceram. Soc. 92, 717 (2009).

    Article  Google Scholar 

  25. P. Wu, G. Eriksson, and A.D. Pelton, J. Am. Ceram. Soc. 76, 2059 (1993).

    Article  Google Scholar 

  26. R. Ebrahimi-Kahrizsangi, and M.H. Abbasi, Trans. Nonferrous Met. Soc. China 1, 217 (2008).

    Article  Google Scholar 

  27. X.L. Zhang, Y.X. Han, Y.J. Li, and Y.S. Sun, Minerals 7, 211 (2017).

    Article  Google Scholar 

  28. L.T. Vlaev, I.G. Markovska, and L.A. Lyubchev, Thermochim. Acta 406, 1 (2003).

    Article  Google Scholar 

  29. L. Vlaev, N. Nedelchev, K. Gyurova, and M. Zagorcheva, J. Anal. Appl. Pyrolysis 81, 253 (2008).

    Article  Google Scholar 

  30. J.T. Ju, G.H. Ji, C.M. Tang, and J.L. An, Steel Res. Int. 91, 2000111 (2020).

    Article  Google Scholar 

  31. L. Wang, C. Zhang, D.X. Cai, J.Q. Zhang, Y. Sasaki, and O. Ostrovski, Metall. Mater. Trans. B 48, 516 (2017).

    Article  Google Scholar 

  32. J.T. Ju, K.S. Yang, Y. Gu, and K. He, Russ. J. Non-Ferr. Met. (2022, in press).

  33. Z. Wang, L. Yu, G.H. Wen, F. Liu, F.M. Wang, and M. Barati, J. Mol. Liq. 342, 117499 (2021).

    Article  Google Scholar 

  34. Z. Wang, G.H. Wen, Q. Liu, P. Tang, W.B. Jiang, and S.H. Huang, Metall. Mater. Trans. B 52, 1574 (2021).

    Article  Google Scholar 

  35. J.T. Ju, G.H. Ji, C.M. Tang, K.S. Yang, and Z.H. Zhu, Sci. Rep. 10, 1 (2020).

    Article  Google Scholar 

  36. Z.T. Zhang, S. Sridhar, and J.W. Cho, ISIJ Int. 51, 80 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51774225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiantao Ju.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, J., Gu, Y., He, K. et al. Investigation of Fluoride Evaporation from CaF2-CaO-Al2O3-MgO-TiO2-(Na2O) Slag for Electroslag Remelting. JOM 75, 2265–2273 (2023). https://doi.org/10.1007/s11837-023-05859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05859-7

Navigation