Skip to main content
Log in

In Situ Preparation of TiCx Particles with Different Sizes and Self-Assembly Behavior Analysis of TiCx/Al-Bi Alloy

  • Advances in Grain Refinement during Solidification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this paper, TiCx particles were prepared by an in situ process and added to an Al-Bi alloy, and the effects of TiCx particles on the homogenization preparation and refinement mechanism of Al-Bi alloys were studied. The TiCx particle size can be greatly reduced by decreasing graphite particle size, and the TiCx particle size was further reduced after changing C source from graphite to MLG. The TiCx particle gradually changed from angular octahedral to truncated octahedral and then became round with the C/Ti ratio increasing from 0.4 to 1.0. After the TiCx particles being added to the Al-Bi alloy, it was found that TiCx had a significant inhibitory effect on the macrosegregation and coarsening of Bi phase. The average diameter of the Bi phase decreased from 4.32 μm to 3.45 μm with the TiCx particle size decreased, and the distribution became more dispersed and uniform, contributing to the heterogeneous nucleation and self-assembly behavior of TiCx particle. With the decreasing of TiCx particle size, the refinement mechanism evolved from heterogeneous nucleation to self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Ratke, and S. Diefenbach, Mater. Sci. Eng. R 15(7), 263 (1995).

    Article  Google Scholar 

  2. J. He, J.Z. Zhao, and R. Lorenz, Acta Mater. 54(7), 1749 (2006).

    Article  Google Scholar 

  3. J.Z. Zhao, S. Drees, and L. Ratke, Mater. Sci. Eng. A 282(1), 262 (2000).

    Article  Google Scholar 

  4. J. Koo, C. Lee, S.J. Hong, K. Kim, and H.M. Lee, J. Alloys Compd. 650, 106 (2015).

    Article  Google Scholar 

  5. K. Qiu, R. Wang, C.Q. Peng, N.G. Wang, Z.Y. Cai, and C. Zhang, Trans. Nonferrous Met. Soc. China 25(12), 3886 (2015).

    Article  Google Scholar 

  6. F. Bertelli, E.S. Freitas, N. Cheung, M.A. Arenas, A. Conde, J.D. Damborenea, and A. Garcia, J. Alloys Compd. 695, 3621 (2017).

    Article  Google Scholar 

  7. Z.C. Lu, M.Q. Zeng, J.Q. Xing, and M. Zhu, Wear 364–365, 122 (2016).

    Article  Google Scholar 

  8. C.Z. Cao, L.Y. Chen, J.Q. Xu, H. Choi, and X.C. Li, Mater. Sci. Eng. A 651, 332 (2016).

    Article  Google Scholar 

  9. W.Q. Lu, S.G. Zhang, W. Zhang, and J.G. Li, J. Mater. Sci. Technol. 32(12), 1321–1325 (2016).

    Article  Google Scholar 

  10. W.Q. Lu, S.G. Zhang, W. Zhang, and J.G. Li, Scripta Mater. 102, 19–22 (2015).

    Article  Google Scholar 

  11. R. Dai, S.J. Zhang, Y.S. Li, X.K. Guo, and J.G. Li, J. Alloys Compd. 509(5), 2289–2293 (2011).

    Article  Google Scholar 

  12. A.P. Silva, J.E. Spinelli, N. Mangelinck-Noël, and A. Garcia, Mater. Des. 31(10), 4584 (2010).

    Article  Google Scholar 

  13. H.X. Jiang, J.Z. Zhao, and J. He, J. Mater. Sci. Technol. 30(10), 1027 (2014).

    Article  Google Scholar 

  14. S. Yang, W.J. Liu, and J. Jia, J. Mater. Sci. 36(22), 5351 (2001).

    Article  Google Scholar 

  15. T.M. Man, L. Zhang, Z.L. Xiang, W.B. Wang, J.W. Gao, and E.G. Wang, Acta Phys. Sin. 67(03), 195 (2018).

    Google Scholar 

  16. P. Jia, J.Y. Zhang, H.R. Geng, X.Y. Teng, D.G. Zhao, Z.X. Yang, Y. Wang, S. Hu, J. Xiang, and X. Hu, Met. Mater. Int. 24(6), 1262 (2018).

    Article  Google Scholar 

  17. L. Zhang, T.N. Man, and E.G. Wang, Acta Metall. Sin. 55(03), 399 (2018).

    Google Scholar 

  18. Q. Sun, H.X. Jiang, J.Z. Zhao, and J. He, Acta Mater. 129, 321 (2017).

    Article  Google Scholar 

  19. K. Zhang, X.F. Bian, Y.M. Li, C.C. Yang, H.B. Yang, and Y. Zhang, J. Alloys Compd. 639, 563 (2015).

    Article  Google Scholar 

  20. S.Q. Cao, W.Q. Lu, Q.D. Hu, P.F. Yu, X. Ge, P.S. Lai, and J.G. Li, Scr. Mater. 209, 114365 (2022).

    Article  Google Scholar 

  21. L.Y. Chen, J.Q. Xu, H. Choi, H. Konishi, S. Jin, and X.C. Li, Nat. Commun. 15, 3879 (2014).

    Article  Google Scholar 

  22. C.Z. Cao, W.Q. Liu, Z.W. Liu, J.Q. Xu, I. Hwang, I.M.D. Rosa, and X.C. Li, Mater. Des. 146, 163 (2018).

    Article  Google Scholar 

  23. J.F. Nie, X.F. Liu, and Y.Y. Wu, J. Alloys Compd. 48(4), 1645 (2013).

    Google Scholar 

  24. Z.J. Wang, Z.X. Qiu, H. Sun, and W.C. Liu, J. Alloys Compd. 806, 788 (2019).

    Article  Google Scholar 

  25. K. Zhao, T. Gao, H.B. Yang, K.Q. Hu, G.L. Liu, Q.Q. Sun, J.F. Nie, and X.F. Liu, Mater. Sci. Eng. A. 806, 140852 (2021).

    Article  Google Scholar 

  26. K. Vasanthakumar, and R.B. Srinivasa, Ceram. Int. 44(1), 484 (2018).

    Article  Google Scholar 

  27. B.X. Dong, H.Y. Yang, F. Qiu, Q. Li, S.L. Shu, B.Q. Zhang, and Q.C. Jiang, Mater. Des. 181, 107951 (2019).

    Article  Google Scholar 

  28. C.M. Li, Y.G. Yin, G. Cao, M. Xu, C. Liu, R.R. Li, G.T. Zhang, Q. Chen, and B.X. Yang, J. Mater. Eng. Perform. 31, 524 (2021).

    Article  Google Scholar 

  29. C.M. Li, Y.G. Yin, M. Xu, J.F. Cheng, L. Shen, G.T. Zhang, Q. Chen, and B.X. Yang, Int. J. Mater. Res. 111(7), 607 (2020).

    Article  Google Scholar 

  30. J.B. Holt, and Z.A. Munir, J. Mater. Sci. 21(1), 251 (1986).

    Article  Google Scholar 

  31. Y. Dong, M.J. Wang, G.W. Zhang, and H. Xu, Results Phys. 23, 104000 (2021).

    Article  Google Scholar 

  32. J.F. Zhang, D.S. Zhang, H.G. Zhu, and Z.H. Xie, Mater. Sci. Eng. A. 794, 139946 (2020).

    Article  Google Scholar 

  33. Y. Birol, J. Alloys Compd. 454, 110 (2008).

    Article  Google Scholar 

  34. R.R. Wang, M. Wang, S.Y. Gao, Z.L. Wang, T.Z. Xin, M. Liu, and Y.P. Bao, J. Clean. Prod. 378, 134548 (2022).

    Article  Google Scholar 

  35. K. Vasanthakumar, and S.R. Bakshi, Ceram. Int. 44, 484 (2018).

    Article  Google Scholar 

  36. Y.X. Li, J.D. Hu, Y.H. Liu, Y. Yang, and Z.X. Guo, Mater. Lett. 61(22), 4366 (2007).

    Article  Google Scholar 

  37. Y. Dong, M.J. Wang, G.W. Zhang, and H. Xu, Results. Phys. 23, 104000 (2021).

    Article  Google Scholar 

  38. H.B. Yang, T. Gao, H.C. Wang, J.F. Nie, and X.F. Liu, J. Mater. Sci. Technol. 33, 616 (2017).

    Article  Google Scholar 

  39. J. Li, Y.Q. Yang, L.L. Li, J.H. Lou, X. Luo, and B. Huang, J. Appl. Phys. 113, 023516 (2013).

    Article  Google Scholar 

  40. G. Yi, H. Li, C.Y. Zang, W.L. Xiao, and C.L. Ma, Mater. Sci. Eng. A 855, 143903 (2022).

    Article  Google Scholar 

  41. X.J. Zhang, W.J. Yu, J. Wang, P. Wang, Z.H. Liu, M. He, and Z.R. Yang, Vacuum 207, 111635 (2023).

    Article  Google Scholar 

  42. Y.Y. Gao, F. Qiu, Q. Zou, J.G. Chu, B.X. Dong, X. Han, H.Y. Yang, B. Jiang, and Q.C. Jiang, Ceram. Int. 47(20), 28584 (2021).

    Article  Google Scholar 

  43. M.S. Song, M.X. Zhang, S.G. Zhang, B. Huang, and J.G. Li, Mater. Sci. Eng. A. 473, 166 (2008).

    Article  Google Scholar 

  44. H.X. Jiang, Q. Sun, L.L. Zhang, and J.Z. Zhao, J. Alloys Compd. 748, 774 (2018).

    Article  Google Scholar 

  45. W.Q. Lu, S.G. Zhang, Q.D. Hu, and J.G. Li, Mater. Lett. 182, 351 (2016).

    Article  Google Scholar 

  46. E.E. Michaelides, Int. J. Heat Mass Transf. 81, 179 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51575151 and 51775158) and Natural Science Foundation of Anhui Province (No. 1908085QE195)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanguo Yin.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest. All authors of this paper claim that the paper is original and have not been copyrighted or published previously.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yin, Y., Xu, M. et al. In Situ Preparation of TiCx Particles with Different Sizes and Self-Assembly Behavior Analysis of TiCx/Al-Bi Alloy. JOM 75, 2828–2840 (2023). https://doi.org/10.1007/s11837-023-05836-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05836-0

Navigation