Skip to main content

Advertisement

Log in

Structural, Microstructural, and Magnetic Property Dependence of Nanostructured Ti50Ni43Cu7 Powder Prepared by High-Energy Mechanical Alloying

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the current study, Ti-Ni-Cu alloy powders were prepared by mechanical alloying using high-energy planetary ball mill under argon atmosphere. The effects of milling time on the evolution of structure, microstructure, and magnetic properties were analysed. Morphological observations indicated a narrow particle size distribution and homogeneous shape. According to the Rietveld analysis, during early milling stage (1–6 h), the milled powder consists of Ti-based solid solution [HCP-Ti(Ni,Cu)], Ni-based solid solution [FCC-Ni(Ti,Cu)], Cu-based solid solution [FCC-Cu(Ti,Ni)], and amorphous phase (28.52 wt%). For prolonged milling time, the NiTiCu (β19) was achieved from the pre-formed phases. Moreover, microstructural parameters varied considerably with milling time; the crystallite size <L> was found to decrease to the nanoscale range, Ti (41), Ni (21 nm), Cu (16 nm), and β19 (29 nm), while the microstrain <σ2>1/2 increased due to the deformations and defects induced during the milling process. Magnetic measurements indicated that all powders exhibited a ferromagnetic behaviour irrespective of milling time whereas the corresponding magnetic parameters were found very sensitive to the milling time. This was associated with particle size refinement in addition to the phase composition and the amount of the amorphous phase; the higher the percentage of the amorphous phase was, the lower the values of Ms and Mr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tuissi, A., Rondelli, G., Bassani, P.: Plasma arc melting (PAM) and corrosion resistance of pure NiTi shape memory alloys. Shape Mem. Superelast. 1(1), 50–57 (2015)

    Google Scholar 

  2. Witkowska, J., Kaminski, J., Locinski, T.P., et al.: Corrosion resistance of NiTi shape memory alloy after hybrid surface treatment using low-temperature plasma. Vacuum. 137, 92–96 (2017)

    ADS  Google Scholar 

  3. Ng, C.H., Nanxi, R., Law, W.C., et al.: Enhancing the cell proliferation performance of NiTi substrate by laser diffusion nitriding. Surf. Coat. Technol. 309, 59–66 (2017)

    Google Scholar 

  4. Sevcikova, J., Pavkova Goldbergova, M.: Biocompatibility of NiTi alloys in the cell behavior. Biol. Met. 30(2), 163–169 (2017)

    Google Scholar 

  5. Piquard, R., D’Acunto, A., Laheurte, P., Dudzinski, D.: Microendmilling of NiTi biomedical alloys, burr formation and phase transformation. Precis. Eng. 38(2), 356–364 (2014)

    Google Scholar 

  6. Thompson, S.A.: An overview of nickel-titanium alloys used in dentistry. Int. Endod. J. 33, 297–310 (2000)

    Google Scholar 

  7. Otsuka, K., Ren, X.: Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005)

    Google Scholar 

  8. Nam, T.H., Saburi, T., Shimizu, K.: Cu-content dependence of shape memory characteristics in Ti-Ni-Cu alloys. Mater. Trans. JIM. 31, 959–967 (1990)

    Google Scholar 

  9. Potapov, P.L., Shelyakov, A.V., Schryvers, D.: On the crystal structure of TiNi-Cu martensite. J. Scr. Mater. 44, 1–7 (2001)

    Google Scholar 

  10. Van Loo, F.J.J., Bastin, G.F., Leenen, A.J.H.: Phase relations in the ternary Ti-Ni-Cu system at 800 and 870 °C. J. Less-Common Met. 57, 111–121 (1978)

    Google Scholar 

  11. Zhang, L., Xie, C., Wu, J.: Martensitic transformation and shape memory effect of Ti–49 at.% Ni alloys. J. Mater. Sci. Eng. A. 438–440, 905–910 (2006)

    Google Scholar 

  12. Xu, Y., Huang, X., Ramirez, A.G.: Crystallization of amorphous NiTiCu thin films. J. Alloys Compd. 480, L13–L16 (2009)

    Google Scholar 

  13. Goryczk, T., Van Humbeeck, J.: Characterization of a NiTiCu shape memory alloy produced by powder technology. J. Achiev. Mater. Manuf. Eng. 17, 65–68 (2006)

    Google Scholar 

  14. Valeanu, M., Lucaci, M., Crisan, A.D., Sofronie, M., Leonat, L., Kuncser, V.: Martensitic transformation of Ti50Ni30Cu20 alloy prepared by powder metallurgy. J. Alloys Compd. 509, 4495–4498 (2011)

    Google Scholar 

  15. Kanchibhotla, S., Munroe, N., Kartikeyan, T.: Amorphization in Ni-Ti-Ta system through mechanical alloying. J. Mater. Sci. 40, 5003–5006 (2005)

    ADS  Google Scholar 

  16. Amini, R., Alijani, F., Ghaffari, M., Alizadeh, M., Okyay, A.K.: Quantitative phase evolution during mechano-synthesis of Ti–Ni–Cu shape memory alloys. J. Alloys Compd. 538, 253–257 (2012)

    Google Scholar 

  17. Ghadimi, M., Shokuhfar, A., Zolriasatein, A., Rostami, H.: Morphological and structural evaluation of nanocrystalline NiTiCu shape memory alloy prepared via mechanical alloying and annealing. J. Mater. Lett. 90, 30–33 (2013)

    Google Scholar 

  18. Lutterotti, L.: Microstructure Analysis by MAUD (2016); http://maud.radiographema.com/

  19. Sakher, E., Loudjani, N., Benchiheub, M., Bououdina, M.: Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using Rietveld analysis. J. Nanomater. 2018, (2018)

  20. Loudjani, N., Benchiheub, M., Bououdina, M.: Structural, thermal and magnetic properties of nanocrystalline Co80Ni20 alloy prepared by mechanical alloying. J. Supercond. Nov. Magn. 29(11), 2717–2726 (2016)

    Google Scholar 

  21. Sakher, E., Loudjani, N., Benchiheub, M., Belkahla, S., Bououdina, M.: Microstructure characterization of nanocrystalline Ni50Ti50 alloy prepared via mechanical alloying method using the Rietveld refinement method applied to the X-ray diffraction. J. Nanosist. Nanomater. Nanotechnol. 15(3), 401–416 (2017)

    Google Scholar 

  22. Li, B.-Y., Rong, L.-J., Li, Y.-Y.: Stress-strain behavior of porous Ni-Ti shape memory intermetallics synthesized from powder sintering. Intermetallics. 8, 643–646 (2000)

    Google Scholar 

  23. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46(1–2), 1–184 (2001)

    Google Scholar 

  24. Loudjani, N., Bensebaa, N., Dekhil, L., Alleg, S., Sunol, J.J.: Structural and magnetic properties of Co50Ni50 powder mixtures. J. Magn. Magn. Mater. 323(23), 3063–3070 (2011)

    ADS  Google Scholar 

  25. Alijani, F., Amini, R., Ghaffari, M., Alizadeh, M., Okyay, A.K.: Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying. J. Mater. Des. 55, 373–380 (2014)

    Google Scholar 

  26. Souilah, S., Alleg, S., Bououdina, M., Sunol, J.J., Hlil, E.K.: Magnetic and structural properties of the nanostructured Cu50Ni50 powders. J. Supercond. Nov. Magn. 30, 1927–1935 (2017)

    Google Scholar 

  27. Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)

    ADS  Google Scholar 

  28. Azzaza, S., Alleg, S., Moumeni, H., Nemamcha, A.R., Rehspringer, J.L., Greneche, J.M.: Magnetic properties of nanostructured ball-milled Fe and Fe50Co50 alloy. J. Phys. Condens. Matter. 18, 7257–7272 (2006)

    ADS  Google Scholar 

  29. Amini, R., Alijani, F., Ghaffari, M., Alizadeh, M., Okyay, A.K.: Formation of β19′, β2, and amorphous phases during mechano-synthesis of nanocrystalline NiTi intermetallics. J. Powder Technol. 253, 797–802 (2014)

    Google Scholar 

  30. Ghadimi, M., Vanda, M., Sourani, M.A.: Nanocrystalline Ti-Ni-Cu shape memory alloys: metallurgical, mechanical and thermal properties. J. Mater. Lett. 139, 359–363 (2015)

    Google Scholar 

  31. Otsuka, K., Wayman, C.M.: Shape memory materials. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  32. Haider, W., Munroe, N., Pulletikurthi, C., Singh Gill, P.K., Amruthaluri, S.: A comparative biocompatibility analysis of ternary nitinol alloys. J. Mater. Eng. Perform. 18, 760–764 (2009)

    Google Scholar 

  33. Lin, K.-N., Wu, S.-K.: Multi-stage transformation in annealed Ni-rich Ti49Ni41Cu10 shape memory alloy. Intermetallics. 18, 87–91 (2010)

    Google Scholar 

  34. Zheng, Y., Cui, L., Schrooten, J.: Thermal cycling behaviours of a NiTiCu wire reinforced Kevlar/epoxy composite. J. Mater. Lett. 59, 3287–3290 (2005)

    Google Scholar 

  35. Zheng, N., Wang, Q., Cui, C., Yin, F., Jiao, Z., Li, H.: Fabrication and damping behaviors of novel polyurethane/TiNiCu composites. Phys. B Condens. Matter. 582, 411911 (2020)

    Google Scholar 

  36. Shelyakov, A.V., Sitnikov, N.N., Menushenkov, A.P., Koledov, V.V., Irjak, A.I.: Nanostructured thin ribbons of a shape memory TiNiCu alloy. J. Thin Solid Films. 519, 5314–5317 (2011)

    ADS  Google Scholar 

  37. Yongqing, F., Hejun, D., Weimin, H., Sam, Z., Min, H.: TiNi-based thin films in MEMS applications. J. Sensors Actuators A. 112, 395–408 (2004)

    Google Scholar 

  38. Shelyakov, A.V., Sitnikov, N.N., Glezer, A.M., Menushenkov, A.P.: Nanostructured shape memory alloys of the TiNi–TiCu system. J. Russ. Acad. Sci. Phys. 74, 1543–1545 (2010)

    Google Scholar 

  39. Ryusuke, H.: Present status of amorphous soft magnetic alloys. J. Magn. Magn. Mater. 215–216, 240–245 (2000)

    Google Scholar 

  40. Qin, F.X., Wang, X.M., Xie, G.Q., Inoue, A.: Distinct plastic strain of Ni–free Ti–Zr–Cu–Pd–Nb bulk metallic glasses with potential for biomedical applications. Intermetallics. 16, 1026–1030 (2008)

    Google Scholar 

  41. Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. J. Acta Mater. 48, 279–306 (2000)

    Google Scholar 

  42. Narushima, T.: Metals for Biomedical Devices, 2nd edn, pp. 495–521. Woodhead Publishing Series in Biomaterials (2019)

  43. Hasegawa, R., Pruess, D.C.: Impact of amorphous metal based transformers on efficiency and quality of electric power distribution. In: Proceedings of the Summer Meeting of IEEE Power Engineering Society Canada, pp. 15–19 (2001)

    Google Scholar 

  44. Smith, C.H.: Application of amorphous magnetic materials at very-high magnetization rates. J. Appl. Phys. 67, 5556–5561 (1990)

    ADS  Google Scholar 

  45. Nakayama, H., Uesugi, T., Ezura, E., Ohmori, C., Kanei, Y., Kiba, K., Saito, K., Sato, Y., Sauda, M., Takagi, A., Tanabe, T., Tanabe, Y., Toda, S., Fujieda, M., Matsumura, R., Mori, Y., Yamamoto, M., Yoshii, M.: Summary of the Measurement of Magnetic Materials for JHF RF Cavity. In: (2)-FINMET-, KEK (High Energy Accelerator Research Organization, Japan) Report 98–13 (in Japanese), pp. 1–36 (1999)

    Google Scholar 

  46. Mehnen, L., Pfüitzer, H., Kaniusas, E.: Magnetostrictive amorphous bimetal sensors. J. Magn. Magn. Mater. 215–216, 779–781 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bououdina.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezgoun, S., Sakher, E., Chouf, S. et al. Structural, Microstructural, and Magnetic Property Dependence of Nanostructured Ti50Ni43Cu7 Powder Prepared by High-Energy Mechanical Alloying. J Supercond Nov Magn 33, 2059–2071 (2020). https://doi.org/10.1007/s10948-020-05455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05455-9

Keywords

Navigation