Skip to main content
Log in

Composite Fayalite with 5% Laterite Soil and Iron Sand: Structural Properties and Band Gap Calculation Based on Theoretical Kubelka–Munk, Taylor Expansion, and Self-Consistent Field Method

  • Composite Materials for Sustainable and Eco-Friendly Material Development and Application
  • Published:
JOM Aims and scope Submit manuscript

Abstractl

The fayalite structure is successfully extracted from nickel slag. The iron sand (IS) and laterite soil (LS) dopant inserted into fayalite system will lead to a significant modification of the crystallite size, crystallinity, and band gap. The composite is prepared by using mechanical alloying method and acidic treatment. X-ray diffraction and UV–Vis spectroscopy are used to reveal the crystallite size, crystallinity, and band gap, respectively. The band gap is inversely proportional to crystallinity and crystallite size, which shows the inconsistency to the band gap changes as contributed from the crystal defect orientation. The Tauc plot with Taylor expansion and self-consistent field methods successfully repaired overlapping UV–Vis absorption spectra for determining the band gap. The band gap values of the fayalite doped by LS are 3.945 ± 0.17 eV and 3.560 ± 0.14 eV for those doped by IS, which are in the middle values of previously reported studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.E. Ringwood, Geochem. J. 11, 111 (1977).

    Article  Google Scholar 

  2. V. Sibanda, E. Sipunga, G. Danha, and T.A. Mamvura, Heliyon 6, e03135 (2020).

    Article  Google Scholar 

  3. R. J. (Robert J. ). Collins, Recycling and Use of Waste Materials and By-Products in Highway Construction (National Academy Press, Washington, D.C., n.d.).

  4. Y. Fan, B. Zhang, J. Song, V. Volski, G.A.E. Vandenbosch, and M. Guo, Sci. Rep. 8, 16155 (2018).

    Article  Google Scholar 

  5. D. Jugović, M. Milović, V.N. Ivanovski, S. Škapin, T. Barudžija, and M. Mitrić, J. Electroceram. 47, 31 (2021).

    Article  Google Scholar 

  6. O. Qafoku, E.S. Ilton, M.E. Bowden, L. Kovarik, X. Zhang, R.K. Kukkadapu, M.H. Engelhard, C.J. Thompson, H.T. Schaef, B.P. McGrail, K.M. Rosso, and J.S. Loring, J. Colloid Interface Sci. 515, 129 (2018).

    Article  Google Scholar 

  7. K. Sushmita, G. Madras, and S. Bose, ACS Omega 5, 4705 (2020).

    Article  Google Scholar 

  8. K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, and W.-F. Hsieh, Chem. Phys. Lett. 409, 208 (2005).

    Article  Google Scholar 

  9. K. Lehtipalo, L. Rondo, J. Kontkanen, S. Schobesberger, T. Jokinen, N. Sarnela, A. Kürten, S. Ehrhart, A. Franchin, T. Nieminen, F. Riccobono, M. Sipilä, T. Yli-Juuti, J. Duplissy, A. Adamov, L. Ahlm, J. Almeida, A. Amorim, F. Bianchi, M. Breitenlechner, J. Dommen, A.J. Downard, E.M. Dunne, R.C. Flagan, R. Guida, J. Hakala, A. Hansel, W. Jud, J. Kangasluoma, V.-M. Kerminen, H. Keskinen, J. Kim, J. Kirkby, A. Kupc, O. Kupiainen-Määttä, A. Laaksonen, M.J. Lawler, M. Leiminger, S. Mathot, T. Olenius, I.K. Ortega, A. Onnela, T. Petäjä, A. Praplan, M.P. Rissanen, T. Ruuskanen, F.D. Santos, S. Schallhart, R. Schnitzhofer, M. Simon, J.N. Smith, J. Tröstl, G. Tsagkogeorgas, A. Tomé, P. Vaattovaara, H. Vehkamäki, A.E. Vrtala, P.E. Wagner, C. Williamson, D. Wimmer, P.M. Winkler, A. Virtanen, N.M. Donahue, K.S. Carslaw, U. Baltensperger, I. Riipinen, J. Curtius, D.R. Worsnop, and M. Kulmala, Nat. Commun. 7, 11594 (2016).

    Article  Google Scholar 

  10. A. Elsagh, E-J. Chem. 9, 659 (2012).

    Article  Google Scholar 

  11. P.K. Parhi, K.H. Park, and G. Senanayake, J. Ind. Eng. Chem. 19, 589 (2013).

    Article  Google Scholar 

  12. H. Zhang, C. Hu, W. Gao, and M. Lu, Minerals 10, 973 (2020).

    Article  Google Scholar 

  13. L. Zhang, Y. Zhu, W. Yin, B. Guo, F. Rao, and J. Ku, ACS Omega 5, 8605 (2020).

    Article  Google Scholar 

  14. R. Nadirov and L. Mussapyrova, Curr. Phys. Chem. 10, 82 (2020).

    Article  Google Scholar 

  15. Y. Li and W.-B. Dai, J. Clean Prod. 175, 176 (2018).

    Article  Google Scholar 

  16. S. Stackhouse, L. Stixrude, and B.B. Karki, Earth Planet Sci. Lett. 289, 449 (2010).

    Article  Google Scholar 

  17. X. Jiang and G.Y. Guo, Phys. Rev. B Condens. Matter Mater. Phys. 69, 1 (2004).

    Google Scholar 

  18. O.V. Krasovska, B. Winkler, E.E. Krasovskii, A.N. Yaresko, V.N. Antonov, and N. Langer, Am. Miner. 82, 672 (1997).

    Article  Google Scholar 

  19. I.M. Chiromawa, A. Shaari, R. Razali, S.T. Ahams, and M. Abdullahi, Malaysian J. Fund. Appl. Sci. 17, 195 (2021).

    Article  Google Scholar 

  20. H.G. Smith and K. Langer, Am. Miner. 67, 343 (1982).

    Google Scholar 

  21. Y. Takahashi, S. Kubuki, K. Akiyama, K. Sinkó, E. Kuzmann, Z. Homonnay, M. Ristić, and T. Nishida, Hyperfine Interact. 226, 747 (2014).

    Article  Google Scholar 

  22. M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 35105 (2005).

    Article  Google Scholar 

  23. I. Khan, K. Nomura, E. Kuzmann, Z. Homonnay, K. Sinkó, M. Ristić, S. Krehula, S. Musić, and S. Kubuki, J. Alloys Compd. 816, 153227 (2020).

    Article  Google Scholar 

  24. C.V. Montoya-Bautista, P. Acevedo-Peña, R. Zanella, and R.-M. Ramírez-Zamora, Top Catal. 64, 131 (2021).

    Article  Google Scholar 

  25. C.-Y. Zhang, X.-B. Wang, X.-F. Zhao, X.-R. Chen, Y. Yu, and X.-F. Tian, Chin. Phys. B 26, 126103 (2017).

    Article  Google Scholar 

  26. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  27. L. Vočadlo and J.P. Brodholt, MRS Bull. 31, 675 (2006).

    Article  Google Scholar 

  28. V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein, J. Phys. Condens. Matter 9, 767 (1997).

    Article  Google Scholar 

  29. H. Heryanto and D. Tahir, ECS J. Solid State Sci. Technol. 10, 123015 (2021).

    Article  Google Scholar 

  30. D. Tahir, H. Heryanto, S. Ilyas, A.N. Fahri, R. Rahmat, M.H. Rahmi, Y. Taryana, and S.G. Sukaryo, J. Alloys Compd. 864, 158780 (2021).

    Article  Google Scholar 

  31. L. Lutterotti, M. Voltolini, H.-R. Wenk, K. Bandyopadhyay, and T. Vanorio, Am. Miner. 95, 98 (2010).

    Article  Google Scholar 

  32. B. Heryanto and D. Abdullah, J. Phys. Conf. Ser. 1317, 012052 (2019).

    Article  Google Scholar 

  33. H.-R. Wenk, L. Lutterotti, P. Kaercher, W. Kanitpanyacharoen, L. Miyagi, and R. Vasin, Powder Diffr. 29, 220 (2014).

    Article  Google Scholar 

  34. P. Makuła, M. Pacia, and W. Macyk, J. Phys. Chem. Lett. 9, 6814 (2018).

    Article  Google Scholar 

  35. A. Ivanets, V. Prozorovich, M. Roshchina, T. Kouznetsova, N. Budeiko, L. Kulbitskaya, A. Hosseini-Bandegharaei, V. Masindi, and V. Pankov, Chem. Eng. J. 411, 128523 (2021).

    Article  Google Scholar 

  36. J.I. Langford and A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978).

    Article  Google Scholar 

  37. G.K. Williamson and R.E. Smallman, Philos. Mag. J. Theoret. Exp. Appl. Phys. 1, 34 (1956).

    Google Scholar 

  38. S. Nam, A.D. French, B.D. Condon, and M. Concha, Carbohydr. Polym. 135, 1 (2016).

    Article  Google Scholar 

  39. X. Ju, M. Bowden, E.E. Brown, and X. Zhang, Carbohydr. Polym. 123, 476 (2015).

    Article  Google Scholar 

  40. P.H. Hermans and A. Weidinger, J. Appl. Phys. 19, 491 (1948).

    Article  Google Scholar 

  41. C. Thambiliyagodage, L. Usgodaarachchi, M. Jayanetti, C. Liyanaarachchi, M. Kandanapitiye, and S. Vigneswaran, ACS Omega 7, 25403 (2022).

    Article  Google Scholar 

  42. M.A. Quintero, J. Shen, C.C. Laing, C. Wolverton, and M.G. Kanatzidis, J Am. Chem. Soc. 144, 12789 (2022).

    Article  Google Scholar 

  43. R. Wittmann, C. Parzinger, and D. Gerthsen, Ultramicroscopy 70, 145 (1998).

    Article  Google Scholar 

  44. S.J. Rozeveld and J.M. Howe, Ultramicroscopy 50, 41 (1993).

    Article  Google Scholar 

  45. A. Yazdani, G.W.H. Höhne, S.T. Misture, and O.A. Graeve, PLoS One 15, e0234774 (2020).

    Article  Google Scholar 

  46. S. Chatterjee, S. Sengupta, T. Saha-Dasgupta, K. Chatterjee, and N. Mandal, Phys. Rev. B 79, 115103 (2009).

    Article  Google Scholar 

  47. H. Heryanto and D. Tahir, Ceram. Int. 47, 16820 (2021).

    Article  Google Scholar 

  48. S. Mateti, M. Mathesh, Z. Liu, T. Tao, T. Ramireddy, A.M. Glushenkov, W. Yang, and Y.I. Chen, Chem. Commun. 57, 1080 (2021).

    Article  Google Scholar 

  49. N. Amir, D. Tahir, and H. Heryanto, J. Mater. Sci. Mater. Electron. 34, 445 (2023).

    Article  Google Scholar 

  50. N. Variankaval, M. McNevin, and S. Shultz, S. Trzaska, in Comprehensive Organic Synthesis, 2nd edn. ed. by P. Knochel (Elsevier, Amsterdam, 2014), pp. 207–233.

    Google Scholar 

  51. J. Duan, D. Farrugia, C. Davis, and Z. Li, Ironmaking Steelmaking 49, 140 (2022).

    Article  Google Scholar 

  52. M. Abdi-Jalebi, M. Ibrahim Dar, A. Sadhanala, E.M.J. Johansson, and M. Pazoki, Characterization Techniques for Perovskite Solar Cell Materials (Elsevier, 2020), pp49–79.

    Book  Google Scholar 

  53. A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, R. Philip, and B. Sahoo, Opt. Mater. (Amst.) 108, 110163 (2020).

    Article  Google Scholar 

  54. T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441 (2008).

    Article  Google Scholar 

  55. D.E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T.D. Mekuria, and A.H. Shah, Results Phys. 12, 1253 (2019).

    Article  Google Scholar 

  56. G. Müller, J. Cryst. Growth 99, 1242 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by PDPU (Penelitian Dosen Pemula): 1477/UN4.22/PT.01.03/2022, and funded by the Hasanuddin University, Indonesia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahlang Tahir.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heryanto, H., Tahir, D. Composite Fayalite with 5% Laterite Soil and Iron Sand: Structural Properties and Band Gap Calculation Based on Theoretical Kubelka–Munk, Taylor Expansion, and Self-Consistent Field Method. JOM 75, 5264–5272 (2023). https://doi.org/10.1007/s11837-023-05828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05828-0

Navigation