Skip to main content
Log in

Microstructural, Mechanical, Texture and Corrosion Properties of Severely Deformed AZ31 Alloy with Sr Addition

  • Influence of Processing on Microstructure and Properties of Mg Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study investigates the simultaneous effects of addition of different amount strontium and also parallel tubular channel angular pressing (PTCAP) method on as-cast AZ31 magnesium alloy. It was seen that adding Sr caused a significant grain refinement in which the mean grain sizes of the PTCAP-processed tubes were refined to ~ 7 μm and ~ 4.5 μm, respectively, after adding 0.7 wt.% and 1.5 wt.% Sr to AZ31 from its initial value which was 520 μm. Moreover, the precipitates fraction was calculated for 3 specimens containing 0 wt.%, 0.7 wt.%, and 1.5 wt.% of Sr. and the highest value was attained for the 1-pass processed specimen with 0.7 wt.% Sr content, which might be responsible for its high ultimate shear strength value compared to other specimens. Texture analysis showed that, by adding more Sr, the texture intensity slightly decreased, correspondingly the {0002} pole figures showed symmetry in texture components. To evaluate mechanical properties variations, the shear-punch test was accomplished. The highest values of (185 MPa) and deformation (31.6%) arose for the 1-pass- processed sample containing 0.7 wt.% Sr. Finally, the corrosion analysis showed that the corrosion rate of the 1-pass PTCAP specimen containing 0.7 wt.% Sr was promising for use in required corrosion-resistant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Xu, Y. Yang, X. Peng, J. Song, and F. Pan, J. Magnes. Alloys 7(3), 536–544 https://doi.org/10.1016/j.jma.2019.08.001 (2019).

    Article  Google Scholar 

  2. M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39(9), 851–865 https://doi.org/10.1007/s00170-007-1279-2 (2008).

    Article  Google Scholar 

  3. C. Li, H. Huang, J. Zhao, and S. Ruan, Optik 157, 85–92 https://doi.org/10.1016/j.ijleo.2017.09.007 (2018).

    Article  Google Scholar 

  4. R. Agarwal, I.N. Iezhitsa, P. Agarwal, and A.A. Spasov, Magnes. Res. 26(1), 2–8 https://doi.org/10.1684/mrh.2013.0336 (2013).

    Article  Google Scholar 

  5. G. Faraji, H.S. Kim, and H.T. Kashi, Severe Plastic Deformation: Methods Processing and Properties (Elsevier, 2018).

    Book  Google Scholar 

  6. R. Sánchez-Martín, M.T. Pérez-Prado, J. Segurado, J. Bohlen, I. Gutiérrez-Urrutia, J. Llorca, and J.M. Molina-Aldareguia, Acta Mater. 71, 283–292 https://doi.org/10.1016/j.actamat.2014.03.014 (2014).

    Article  Google Scholar 

  7. R.K. Sabat, R.K. Mishra, A.K. Sachdev, and S. Suwas, Mater. Lett. 153, 158 https://doi.org/10.1016/j.matlet.2015.03.036 (2015).

    Article  Google Scholar 

  8. N. Zhou, Z. Zhang, L. Jin, J. Dong, B. Chen, and W. Ding, Mater. Des. 56, 966 https://doi.org/10.1016/j.matdes.2013.12.014 (2014).

    Article  Google Scholar 

  9. Y.H. Kim, H.T. Sohn, and W.J. Kim, Mater. Sci. Eng. A 597, 157 https://doi.org/10.1016/j.msea.2013.12.080 (2014).

    Article  Google Scholar 

  10. K. Bryła, J. Morgiel, M. Faryna, K. Edalati, and Z. Horita, Mater. Lett. 212, 323 https://doi.org/10.1016/j.matlet.2017.10.113 (2018).

    Article  Google Scholar 

  11. J. Wei, S. Jiang, Z. Chen, and C. Liu, Mater. Sci. Eng. A 780, 139192 https://doi.org/10.1016/j.msea.2020.139192 (2020).

    Article  Google Scholar 

  12. D.F. Shi, C.M. Cepeda-Jiménez, M.T. Pérez-Prado, and J. Magnes, Alloys 10, 224 https://doi.org/10.1016/j.jma.2021.09.024 (2022).

    Article  Google Scholar 

  13. W.-J. Kim, S.W. Chung, C.S. Chung, and D. Kum, Acta Mater. 49, 3337 https://doi.org/10.1016/S1359-6454(01)00008-8 (2001).

    Article  Google Scholar 

  14. J.G. Kim, J.H. Moon, A. Amanov, and H.S. Kim, Mater. Sci. Eng. A 739, 105 https://doi.org/10.1016/j.msea.2018.10.045 (2019).

    Article  Google Scholar 

  15. N. Stanford, and M. Barnett, Scr. Mater. 58, 179 https://doi.org/10.1016/j.scriptamat.2007.09.054 (2008).

    Article  Google Scholar 

  16. N. Stanford, D. Atwell, A. Beer, C. Davies, and M.R. Barnett, Scr. Mater. 59, 772 https://doi.org/10.1016/j.scriptamat.2008.06.008 (2008).

    Article  Google Scholar 

  17. J. Bohlen, S. Yi, D. Letzig, and K.U. Kainer, Mater. Sci. Eng. A 527, 7092 https://doi.org/10.1016/j.msea.2010.07.081 (2010).

    Article  Google Scholar 

  18. H. Borkar, M. Hoseini, and M. Pekguleryuz, Mater. Sci. Eng. A 549, 168 https://doi.org/10.1016/j.msea.2012.04.029 (2012).

    Article  Google Scholar 

  19. X. Zeng, Y. Wang, W. Ding, A.A. Luo, and A.K. Sachdev, Metall. Mater. Trans. A 37, 1333 https://doi.org/10.1007/s11661-006-1085-8 (2006).

    Article  Google Scholar 

  20. S.F. Liu, B. Li, X.H. Wang, W. Su, and H. Han, J. Mater. Process. Technol. 209, 3999 https://doi.org/10.1016/j.jmatprotec.2008.09.020 (2009).

    Article  Google Scholar 

  21. B. Chen, D.-L. Lin, L. Jin, X.-Q. Zeng, and C. Lu, Mater. Sci. Eng. A 483–484, 113 https://doi.org/10.1016/j.msea.2006.10.199 (2008).

    Article  Google Scholar 

  22. K. Xia, J.T. Wang, X. Wu, G. Chen, and M. Gurvan, Mater. Sci. Eng. A 410–411, 324 https://doi.org/10.1016/j.msea.2005.08.123 (2005).

    Article  Google Scholar 

  23. G. Faraji, P. Yavari, S. Aghdamifar, and M.M. Mashhadi, J. Mater. Sci. Technol. 30, 134 https://doi.org/10.1016/j.jmst.2013.08.010 (2014).

    Article  Google Scholar 

  24. G. Faraji, A. Babaei, M.M. Mashhadi, and K. Abrinia, Mater. Lett. 77, 82 https://doi.org/10.1016/j.matlet.2012.03.007 (2012).

    Article  Google Scholar 

  25. M. Mesbah, A. Fattahi, A.R. Bushroa, G. Faraji, K.Y. Wong, W.J. Basirun, A. Fallahpour, and B. Nasiri-Tabrizi, Met. Mater. Int. 27, 277 https://doi.org/10.1007/s12540-019-00495-w (2021).

    Article  Google Scholar 

  26. A. Fata, G. Faraji, M.M. Mashhadi, and V. Tavakkoli, Mater. Sci. Eng. A 674, 9 https://doi.org/10.1016/j.msea.2016.07.117 (2016).

    Article  Google Scholar 

  27. G.-L. Song, and Z. Xu, Electrochim. Acta 55, 4148 https://doi.org/10.1016/j.electacta.2010.02.068 (2010).

    Article  Google Scholar 

  28. A.I. Alateyah, et al., Metals 11, 363 https://doi.org/10.3390/met11020363 (2021).

    Article  Google Scholar 

  29. G. Ben Hamu, D. Eliezer, and L. Wagner, J. Alloys Compd. 468, 222 https://doi.org/10.1016/j.jallcom.2008.01.084 (2009).

    Article  Google Scholar 

  30. V. Tavakkoli, M. Afrasiab, G. Faraji, and M.M. Mashhadi, Mater. Sci. Eng. A 625, 50 https://doi.org/10.1016/j.msea.2014.11.085 (2015).

    Article  Google Scholar 

  31. H. Abdolvand, H. Sohrabi, G. Faraji, and F. Yusof, Mater. Lett. 143, 167 https://doi.org/10.1016/j.matlet.2014.12.107 (2015).

    Article  Google Scholar 

  32. F. Cao, Z. Shi, G.-L. Song, M. Liu, and A. Atrens, Corros. Sci. 76, 60 https://doi.org/10.1016/j.corsci.2013.06.030 (2013).

    Article  Google Scholar 

  33. S. Arthanari, J.C. Jang, and K.S. Shin, Corros. Sci. Technol. 16, 100 https://doi.org/10.14773/cst.2017.16.3.100 (2017).

    Article  Google Scholar 

  34. A. Fata, M. Eftekhari, G. Faraji, and M. Mosavi Mashhadi, J. Mater. Eng. Perform. 27, 2330 https://doi.org/10.1007/s11665-018-3350-6 (2018).

    Article  Google Scholar 

  35. A. Fata, G. Faraji, M.M. Mashhadi, and V. Tavakkoli, Arch. Metall. Mater. 62, 159 https://doi.org/10.1515/amm-2017-0022 (2017).

    Article  Google Scholar 

  36. G. Vespa, L.W.F. Mackenzie, R. Verma, F. Zarandi, E. Essadiqi, and S. Yue, Mater. Sci. Eng. A 487, 243 https://doi.org/10.1016/j.msea.2007.10.064 (2008).

    Article  Google Scholar 

  37. K. Bryla, J. Dutkiewicz, and P. Malczewski, Arch. Mater. Sci. 18, 18 (2009).

    Google Scholar 

  38. B. Tang, S.-S. Li, X.-S. Wang, D.-B. Zeng, and R. Wu, Scr. Mater. 53, 1077 https://doi.org/10.1016/j.scriptamat.2005.06.039 (2005).

    Article  Google Scholar 

  39. H.L. Zhao, S.K. Guan, and F.Y. Zheng, J. Mater. Res. 22, 2423 https://doi.org/10.1557/jmr.2007.0331 (2007).

    Article  Google Scholar 

  40. L. Shang, I.H. Jung, S. Yue, R. Verma, and E. Essadiqi, J. Alloys Compd. 492, 173 https://doi.org/10.1016/j.jallcom.2009.11.159 (2010).

    Article  Google Scholar 

  41. J. Wang, R. Lu, D. Qin, X. Huang, and F. Pan, Mater. Sci. Eng. A 560, 667 https://doi.org/10.1016/j.msea.2012.10.010 (2013).

    Article  Google Scholar 

  42. S.H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, Mater. Sci. Eng. A 325, 228 https://doi.org/10.1016/S0921-5093(01)01416-2 (2002).

    Article  Google Scholar 

  43. Q. Jin, S.-Y. Shim, and S.-G. Lim, Scr. Mater. 55, 843 https://doi.org/10.1016/j.scriptamat.2006.05.040 (2006).

    Article  Google Scholar 

  44. H.K. Lin, J.C. Huang, and T.G. Langdon, Mater. Sci. Eng. A 402, 250 https://doi.org/10.1016/j.msea.2005.04.018 (2005).

    Article  Google Scholar 

  45. S. Ferrasse, K.T. Hartwig, R.E. Goforth, and V.M. Segal, Metall. Mater. Trans. A 28, 1047 https://doi.org/10.1007/s11661-997-0234-z (1997).

    Article  Google Scholar 

  46. S.X. Ding, W.T. Lee, C.P. Chang, L.W. Chang, and P.W. Kao, Scr. Mater. 59, 1006 https://doi.org/10.1016/j.scriptamat.2008.07.007 (2008).

    Article  Google Scholar 

  47. M. Masoumi, F. Zarandi, and M. Pekguleryuz, Mater. Sci. Eng. A 528, 1268 https://doi.org/10.1016/j.msea.2010.10.003 (2011).

    Article  Google Scholar 

  48. L.W.F. Mackenzie, F.J. Humphreys, G.W. Lorimer, K. Savage, T. Wilks, in Magnesium (2003), pp. 158–163.

  49. J. Xu, B. Jiang, Y. Kang, J. Zhao, W. Zhang, K. Zheng, and F. Pan, J. Mater. Sci. Technol. 113, 48 https://doi.org/10.1016/j.jmst.2021.09.023 (2022).

    Article  Google Scholar 

  50. J.W. Seong, and W.J. Kim, Acta Biomater. 11, 531 https://doi.org/10.1016/j.actbio.2014.09.029 (2015).

    Article  Google Scholar 

  51. N.N. Aung, and W. Zhou, Corros. Sci. 52, 589 https://doi.org/10.1016/j.corsci.2009.10.018 (2010).

    Article  Google Scholar 

  52. G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Corros. Sci. 58, 145 https://doi.org/10.1016/j.corsci.2012.01.021 (2012).

    Article  Google Scholar 

  53. M. Alvarez-Lopez, M.D. Pereda, J.A. Del Valle, M. Fernandez-Lorenzo, M.C. Garcia-Alonso, O.A. Ruano, and M.L. Escudero, Acta Biomater. 6, 1763 https://doi.org/10.1016/j.actbio.2009.04.041 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work is based upon research funded by Iran National Science Foundation (INSF) under project No.4013350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghader Faraji.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadrkhah, M., Majidabad, M.A., Mesbah, M. et al. Microstructural, Mechanical, Texture and Corrosion Properties of Severely Deformed AZ31 Alloy with Sr Addition. JOM 75, 2351–2362 (2023). https://doi.org/10.1007/s11837-023-05786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05786-7

Navigation