Skip to main content
Log in

Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A technique invented in the former Soviet Union and recently introduced in the United States, called equal channel angular extrusion (ECAE), produces intense and uniform deformation by simple shear and is applied to 25 × 25 × 152-mm billets of Cu 101 and Al 3003. Microcrystalline structures with a grain size of 0.2 to 0.4 µm are created during room-temperature multipass ECAE deformation for true strains lying in the range ε=2.31 to 9.24. Evidence shows that intense simple shear deformation promotes dynamic or continuous recrystallization by subgrain rotation. The effects of the number of extrusion passes and deformation route for Cu 101, and the deformation route after four passes for Al 3003, are studied. Increasing the number of ECAE passes in Cu 101 causes strength to reach saturation and grain refinement stabilization after four passes (true strain of 4.68), and subgrain misorientation to increase as the number of passes increases. For multipass ECAE with billet orientation constant (route A) or rotated 90 deg between all passes (route B), two levels of structures are created inside the original grains: shear bands (first level) and very fine subgrains (second level) within the shear bands. For a billet rotation of 180 deg between passes (route C), an unusual event is observed. At each even numbered pass, shear bands nearly disappear and only subgrains are present inside the original grains. Route B gives the highest strength, whereas route C produces a more equiaxed and stable microstructure. Subsequent static recrystallization increases the average grain size to 5 to 10 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Suryanarayana: Bull. Mater. Sci., 1994, vol. 17, pp. 307–46.

    CAS  Google Scholar 

  2. R.Z. Valiev, A.V. Kornikov, and R.R. Mulyokov: Mater. Sci. Eng., 1993, vol. A168, pp. 141–48.

    CAS  Google Scholar 

  3. V.Y. Gertsman, R. Birringer, R.Z. Valiev, and H. Gleiter: Scripta Metall., 1994, vol. 30, pp. 229–34.

    Article  CAS  Google Scholar 

  4. I. Saunders and J. Nutting: Met. Sci., 1984, vol. 18, pp. 571–75.

    Article  Google Scholar 

  5. H.J. Zughaer and J. Nutting: Mater. Sci. Technol., 1992, vol. 8, pp. 1104–07.

    CAS  Google Scholar 

  6. V. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi: Acta Metall. Mater., 1994, vol. 42, pp. 3183–95.

    Article  CAS  Google Scholar 

  7. V.M. Segal: Patent of the USSR, No. 575,892, 1977.

  8. V.M. Segal, V.I. Reznikov, A.E. Drobyshevkiy, and V.I. Kopylov: Russ. Metall., 1981, vol. 1, pp. 99–105 (English translation).

    Google Scholar 

  9. V.M. Segal, K.T. Hartwig, and R.E. Goforth: First International Conference on Processing Materials for Properties, H. Henein and T. Oki, eds., TMS, Honolulu, HI, 1993, pp. 971–74.

    Google Scholar 

  10. A.K. Fedotov, V.M. Segal, V.I. Kopylov, V.M. Anischik, and I.I. Gerys: Dokl. Acad. Sci., BSSR, 1983, vol. 27, pp. 630–33.

    CAS  Google Scholar 

  11. V.M. Segal: Proceedings of the Fifth International Aluminum Technology Seminar, 1992, vol. 2, pp. 403–07.

    Google Scholar 

  12. V.M. Segal: Mater. Sci. Eng., 1995, vol. A197, pp. 157–64.

    CAS  Google Scholar 

  13. R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet: Acta Metall. Mater., 1994, vol. 42, pp. 2467–75.

    Article  CAS  Google Scholar 

  14. N.A. Akhmadeev, N.P. Kobelev, R.R. Mulyokov, YA.M. Soifer, and R.Z. Valiev: Acta Metall. Mater., 1993, vol. 41, pp. 1041–46.

    Article  CAS  Google Scholar 

  15. V.M. Segal: First International Conference on Processing Materials for Properties, H. Henein and T. Oki, eds., TMS, Honolulu, HI, 1993, pp. 947–50.

    Google Scholar 

  16. P.J. Goodhew: Specimen Preparation for Transmission Electron Microscopy of Materials, Oxford University Press, Oxford, United Kingdom, 1984.

    Google Scholar 

  17. Stephane Ferrasse: Master’s Thesis, Texas A&M University, College Station, TX, 1995.

    Google Scholar 

  18. R.R. Mulyokov, N.A. Akhmadeev, S.B. Mikhailov, and R.Z. Valiev: Mater. Sci. Eng., 1993, vol. A171, pp. 143–49.

    Google Scholar 

  19. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev: Mater. Sci. Eng., 1991, vol. A137, pp. 35–40.

    CAS  Google Scholar 

  20. M.T. Lyttle and J.A. Wert: J. Mater. Sci., 1994, vol. 29, pp. 3342–50.

    Article  CAS  Google Scholar 

  21. Metals Handbook, 10th ed., vol. 2, Metallography and Microstructures, ASM, Materials Park, OH, 1990, pp. 84–85 and 266–68.

  22. H. Gudmunsson, D. Brooks, and J.A. Wert: Acta. Metall. Mater., 1991, vol. 39, pp. 19–35.

    Article  Google Scholar 

  23. R. DeWitt: J. Phys., 1972, vol. C5, pp. 529–39.

    Google Scholar 

  24. A.E. Romanov and V.I. Vladimirov: Phys. Status Solidi, 1983, vol. 78, pp. 11–34.

    Article  CAS  Google Scholar 

  25. T.R. McNelley, E.W. Lee, and A. Garg: Aluminum Alloys—Physical and Mechanical Properties, Engineering Materials Advisory Services Ltd., West Midlands, England, 1986.

    Google Scholar 

  26. J.D. Embury, A. Korbel, V.S. Raghunathan, and J. Rys: Acta Metall., 1984, vol. 32, pp. 1883–94.

    Article  CAS  Google Scholar 

  27. J. Hirsh, K. Lucke, and M. Hatherly: Acta Metall., 1988, vol. 36, pp. 2905–27.

    Article  Google Scholar 

  28. A.S. Malin and M. Hatherly: Met. Sci., 1979, vol. 13, pp. 463–72.

    Article  CAS  Google Scholar 

  29. M. Blicharski and S. Gorczyca: Met. Sci., 1978, vol. 12, pp. 303–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrasse, S., Hartwig, K.T., Goforth, R.E. et al. Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion. Metall Mater Trans A 28, 1047–1057 (1997). https://doi.org/10.1007/s11661-997-0234-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0234-z

Keywords

Navigation