Skip to main content
Log in

Effects of Permanent Magnetic Stirring on the Solidification Nucleation Behavior of GH4742 Superalloy

  • Advances in Grain Refinement during Solidification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Permanent magnetic stirring (PMS) was applied during the solidification of GH4742 superalloy for preventing hot cracking through grain refining, and the solidification nucleation behavior under different rotation speeds was studied by both experimental investigation and numerical simulation. The results show that the equiaxed zone is enlarged, and equiaxed grains are remarkably refined by PMS. However, the grain-refining degree has little change with the rotation speed increases from 100 rpm to 300 rpm. The forced flow of GH4742 metal melt is produced by PMS, and it increases with increasing rotation speed. The grain refining mainly depends on the multiplication of solidified nuclei by the forced melt flow which promotes the nuclei separation from the mold wall at the solidification nucleation stage. However, the nuclei number shows no significant difference with increasing rotation speed because of two opposite effects of forced melt flow on the nuclei separation behavior. The minimum separation length of nucleus from the mold wall is decreased with increasing rotation speed, which promotes the nuclei separation. Meanwhile, the combination of atoms to nucleus is reduced, which inhibits the nuclei separation. This mechanism offers new insights into the effects of PMS on the solidification of superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.M. Wang, H.Y. Jing, L.Y. Xu, Y.D. Han, L. Zhao, B. Xiao, and S.Q. Yang, J. Mater. Sci. 54, 9775 https://doi.org/10.1007/s10853-019-03566-w (2019).

    Article  Google Scholar 

  2. X.D. Lu, Q. Deng, J.H. Du, J.L. Qu, J.Y. Zhuang, and Z.Y. Zhong, J. Alloys Compd. 477, 100 https://doi.org/10.1016/j.jallcom.2008.10.088 (2009).

    Article  Google Scholar 

  3. W.W. Kong, C. Yuan, and B.N. Zhang, Mater. Sci. Eng. A 791, 1 https://doi.org/10.1016/j.msea.2020.139775 (2020).

    Article  Google Scholar 

  4. P. Jiang, S.N. Geng, X.Y. Shao, G.Y. Mi, C.M. Wang, H. Wu, C. Han, and S. Gao, JOM 71, 3223 https://doi.org/10.1007/s11837-019-03342-w (2019).

    Article  Google Scholar 

  5. L. Zhang, L. Wang, Y. Liu, X. Song, T. Yu, and R. Duan, J. Iron Steel Res. Int. 29, 1505 https://doi.org/10.1007/s42243-022-00767-7 (2022).

    Article  Google Scholar 

  6. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, Nature 549, 365 https://doi.org/10.1038/nature23894 (2017).

    Article  Google Scholar 

  7. S.F. Liu, L.Y. Liu, and L.G. Kang, J. Alloys Compd. 450, 546 https://doi.org/10.1016/j.jallcom.2007.07.053 (2008).

    Article  Google Scholar 

  8. A. Bojarevics, T. Beinerts, Y. Gelfgat, and I. Kaldre, Int. J. Cast Met. Res. 29, 154 https://doi.org/10.1080/13640461.2015.1120998 (2016).

    Article  Google Scholar 

  9. W.L. Wang, J.F. Peng, J. Zeng, C.Y. Zhu, Y.D. Yang, and A. McLean, Philos. Mag. 101, 2273 https://doi.org/10.1080/14786435.2021.1965238 (2021).

    Article  Google Scholar 

  10. W. Yan, W.Q. Chen, S.L. Zhang, B. Li, and J. Li, Mater. Charact. 157, 109894 https://doi.org/10.1016/j.matchar.2019.109894 (2019).

    Article  Google Scholar 

  11. A. Bojarevičs, R. Baranovskis, I. Kaldre, M. Milgrāvis, and T. Beinerts, IOP Conf. Ser. Mater. Sci. Eng. 228, 012022 https://doi.org/10.1088/1757-899X/228/1/012022 (2017).

    Article  Google Scholar 

  12. O. Bustos, S. Ordoñez, and R. Colás, Int. J. Metalcast. 7, 29 https://doi.org/10.1007/BF03355542 (2013).

    Article  Google Scholar 

  13. F. Otsubo, S. Nishida, and H. Era, Mater. Trans. 55, 806 https://doi.org/10.2320/matertrans.F-M2014804 (2014).

    Article  Google Scholar 

  14. H.G. Wei, F.Z. Xia, S. Qian, and M.P. Wang, J. Mater. Process. Technol. 240, 344 https://doi.org/10.1016/j.jmatprotec.2016.10.012 (2017).

    Article  Google Scholar 

  15. X.P. Ma, Y.J. Li, and Y.S. Yang, J. Mater. Res. 24, 2670 https://doi.org/10.1557/JMR.2009.0326 (2009).

    Article  Google Scholar 

  16. X.P. Ma, Y.J. Li, and Y.S. Yang, J. Mater. Res. 24, 3689 https://doi.org/10.1557/JMR.2009.0445 (2009).

    Article  Google Scholar 

  17. J. Zou, H.T. Zhang, Z.B. Wu, J.H. Wang, B.M. Li, J.Z. Cui, H. Nagaumi, and Y.L. Li, J. Mater. Res. Technol. 14, 1585 https://doi.org/10.1016/j.jmrt.2021.07.039 (2021).

    Article  Google Scholar 

  18. O. Ben-David, A. Levy, B. Mikhailovich, and A. Azulay, Int. J. Heat Mass Transf. 81, 373 https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.039 (2015).

    Article  Google Scholar 

  19. W.C. Duan, S.Q. Yin, W.H. Liu, Z. Zhao, K. Hu, P. Wang, J.Z. Cui, and Z.Q. Zhang, J. Magn. Alloys 9, 166 https://doi.org/10.1016/j.jma.2020.03.008 (2021).

    Article  Google Scholar 

  20. H.T. Zhang, H. Nagaumi, Y.B. Zuo, and J.Z. Cui, Mater. Sci. Eng. A 448, 189 https://doi.org/10.1016/j.msea.2006.10.062 (2007).

    Article  Google Scholar 

  21. J.C. Chen, Y.H. Wei, X.H. Zhan, Y. Li, W.M. Ou, and T. Zhang, J. Mater. Process. Technol. 254, 325 https://doi.org/10.1016/j.jmatprotec.2017.11.046 (2018).

    Article  Google Scholar 

  22. A.D. Brent, V.R. Voller, and K.J. Reid, Numer. Heat Transf. Part A 13, 297 https://doi.org/10.1080/10407788808913615 (1988).

    Article  Google Scholar 

  23. I. Grants and G. Gerbeth, J. Fluid Mech. 431, 407 https://doi.org/10.1017/S0022112000003141 (2001).

    Article  Google Scholar 

  24. I. Grants and G. Gerbeth, J. Fluid Mech. 463, 229–239 https://doi.org/10.1017/S0022112002008807 (2002).

    Article  MathSciNet  Google Scholar 

  25. A. Noeppel, A. Ciobanas, X.D. Wang, K. Zaidat, N. Mangelinck, O. Budenkova, A. Weiss, G. Zimmermann, and Y. Fautrelle, Metall. Mater. Trans. B 41, 193 https://doi.org/10.1007/s11663-009-9311-6 (2010).

    Article  Google Scholar 

  26. B. Willers, S. Eckert, U. Michel, I. Haase, and G. Zouhar, Mater. Sci. Eng. A 402, 55 https://doi.org/10.1016/j.msea.2005.03.108 (2005).

    Article  Google Scholar 

  27. J. Zeng, W.Q. Chen, Y.D. Yang, and A. McLean, Ironmak. Steelmak. 45, 576 https://doi.org/10.1080/03019233.2017.1303921 (2018).

    Article  Google Scholar 

  28. J.C. Jie, Q.C. Zou, J.L. Sun, Y.P. Lu, T.M. Wang, and T.J. Li, Acta Mater. 72, 57 https://doi.org/10.1016/j.actamat.2014.03.031 (2014).

    Article  Google Scholar 

  29. A. Ohno, T. Motegi, and H. Soda, Trans. ISIJ 11, 18 https://doi.org/10.2355/isijinternational1966.11.18 (1971).

    Article  Google Scholar 

  30. X.L. Liao, Q.J. Zhai, J. Luo, W.J. Chen, and Y.Y. Gong, Acta Mater. 55, 3103 https://doi.org/10.1016/j.actamat.2007.01.014 (2007).

    Article  Google Scholar 

  31. H.M. Ji, Mater. Res. Express 7, 096516 https://doi.org/10.1088/2053-1591/abb859 (2020).

    Article  Google Scholar 

  32. S.M. Xing, J. Ma, W.S. Chen, Y.M. Li, and H.Q. Hu, Trans. Nonferrous Met. Soc. China 9, 270 https://doi.org/10.19476/j.ysxb.1004.0609.1999.s1.052 (1999).

    Article  Google Scholar 

  33. J.Z. Wang and J.G. Qi, The theory and application on electric pulse in metal metal melt (Science Press, Beijing, 2011).

    Google Scholar 

  34. B.Y. Geng, R.F. Zhou, L. Li, H.Y. Lv, Y.K. Li, D. Bai, and Y.H. Jiang, Materials 12, 32 https://doi.org/10.3390/ma12010032 (2019).

    Article  Google Scholar 

  35. L. Verlet, Phys. Rev. 159, 98 https://doi.org/10.1103/PhysRev.159.98 (1967).

    Article  Google Scholar 

  36. A.S. Lemak and N.K. Balabaev, J. Comput. Chem. 17, 1685 https://doi.org/10.1002/(SICI)1096-987X(19961130)17:15%3c1685::AID-JCC1%3e3.3.CO;2-D (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Major Projects in Aviation Engines and Gas Turbines of China (Grant No. J2019-VI-0020-0136) and the National Key Research and Development Program of China (Grant No. 2022YFB3705102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Yang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, L., Song, X. et al. Effects of Permanent Magnetic Stirring on the Solidification Nucleation Behavior of GH4742 Superalloy. JOM 75, 2818–2827 (2023). https://doi.org/10.1007/s11837-023-05740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05740-7

Navigation