Skip to main content
Log in

Microstructure Evolution of a Semisolid Magnesium Alloy Slurry Obtained via an Internal Rapid Cooling Stirring Process (IRCSP)

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Grain refinement of magnesium alloys is an effective way to improve their tensile strength and ductility to meet industrial application requirements. Herein, a new rheocasting process, internal rapid cooling stirring process (IRCSP), was used to obtain a fully grain-refined spherical semi-solid slurry. Rapid quenching was used to study the microstructure evolution during IRCSP. The experimental results showed that the solid fraction was mainly determined by nucleation, and grain growth played only a minor role. The particle density was determined by a combination of the fragmentation and coalescence of solid particles. Changes in grain size over time followed a 1/3 power law with a ripening coefficient. In addition, the particle distribution was determined using shear stress flow and cooling rates. The microstructural analysis suggested that a fast cooling rate led to grain refinement, and rapid stirring enhanced the interfacial energy and stability of the solid-liquid interface. As a result, fine globular primary α-Mg particles were obtained during IRCSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D.H. StJohn, M.A. Easton, M. Qian, and J.A. Taylor: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2935-49.

    Article  Google Scholar 

  2. Y. Wang, X. Liao, and Y. Zhu: Int. J. Mater. Res., 2013, vol. 100 (12), pp. 1632-7.

    Article  Google Scholar 

  3. J. Jiang and Y. Wang: Mater. Des., 2015, vol. 79, pp. 32-41.

    Article  CAS  Google Scholar 

  4. Z. Zhao and W. Mao: Acta Metall. Sin., 2008, vol. 29 (2), pp. 642-5.

    Google Scholar 

  5. S.M. Alvani, H. Aashuri, A. Kokabi, and R. Beygi: Trans. Nonferr. Metal. Soc., 2010, vol. 20 (9), pp. 1792-8.

    Article  CAS  Google Scholar 

  6. Z. Liu, W. Mao, and X. Liu: Trans. Nonferr. Metal. Soc., 2010, vol. 20 (S3), pp. 805-10.

    Article  CAS  Google Scholar 

  7. J. Jiang and Y. Wang: Mater. Sci. Eng. A, 2015, vol. 639, pp. 350-8.

    Article  CAS  Google Scholar 

  8. H. Guo, X. Yang, and B. Hu: Acta Metall. Sin., 2006, vol. 19 (5), pp. 328-34.

    Article  CAS  Google Scholar 

  9. M.A. Easton, H. Kaufmann, and W. Fragner: Mater. Sci. Eng. A, 2006, vol. 420 (1-2), pp. 135-43.

    Article  Google Scholar 

  10. J. Yurko, M. Flemings, and A. Martinez: Die Cast Eng., 2004, 48 (1), pp.50-52.

    Google Scholar 

  11. Payandeh, Mostafa, Anders E W Jarfors, and Magnus Wessen: Solid State Phenom., 2012: 392-97.

  12. D.B. Spencer, R. Mehrabian, and M.C. Flemings: Metall. Mater. Trans. B, 1972, vol. 3 (7), pp. 1925-32.

    Article  CAS  Google Scholar 

  13. H.V. Atkinson: Cheminform, 2005, vol. 50 (3), pp. 341-412.

    CAS  Google Scholar 

  14. M.C. Flemings: Metall. Trans. A, 1991, vol. 22 (5), pp. 957-81.

    Article  Google Scholar 

  15. J.W. Cho and D.R. Paul: Polymer, 2001, vol. 42 (3), pp. 1083-94.

    Article  CAS  Google Scholar 

  16. S. Sumitomo, H. Koizumi, M.A. Uddin, and Y. Kato: Ultrason. Sonochem., 2018, vol. 40, pp. 822-31.

    Article  CAS  Google Scholar 

  17. J. Wannasin, R. Canyook, and R. Burapa: Scr. Mater., 2008, vol. 59 (10), pp. 1091-94.

    Article  CAS  Google Scholar 

  18. T. Chucheep, R. Burapa, S. Janudom, S. Wisutmethangoon, and J. Wannasin: Trans. Nonferr. Metal. Soc., 2010, vol. 20 (s3), pp. s981-87.

    Article  Google Scholar 

  19. G.A. Yakaboylu and E.M. Sabolsky: J. Microsc., 2017, vol. 266 (3), pp. 263-72.

    Article  CAS  Google Scholar 

  20. R. Canyook, S. Petsut, S. Wisutmethangoon, M.C. Flemings, and J. Wannasin: Trans. Nonferr. Metal. Soc., 2010, vol. 20 (9), pp. 1649-55.

    Article  CAS  Google Scholar 

  21. R.A. Martinez and M.C. Flemings: Metall. Mater. Trans. A, 2005, vol. 36 (8), pp. 2205-10.

    Article  CAS  Google Scholar 

  22. S. Terzi, L. Salvo, M. Suery, and E.Boller. : Acta Mater., 2010, vol. 58(1), pp.20-30.

    Article  CAS  Google Scholar 

  23. Limodin N, Salvo L, Boller E, et al: Acta Mater., 2009, vol. 57(7) pp.2300-2310.

    Article  CAS  Google Scholar 

  24. R. Canyook, J. Wannasin, S. Wisuthmethangkul, and M.C. Flemings: Acta Mater., 2012, vol. 60 (8), pp. 3501-10.

    Article  CAS  Google Scholar 

  25. G. Liang, Y. Ali, G. You, and M.X. Zhang: Materialia, 2018, vol. 3, pp. 113-21.

    Article  Google Scholar 

  26. X. Liu, Q. Zhu, Y. Zuo, C. Zhu, Z. Zhao, and J. Cui: Metall. Mater. Trans. A, 2019, vol. 50 (12), pp. 5727-33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51674144, 51764040), the Luodi Research Plan of the Jiangxi Educational Department (No. KJLD14016), the Natural Science Foundation of Jiangxi Province (Nos. 20122BAB206021, 20133ACB21003), the Jiangxi Province Young Scientist Cultivation Program (No. 20122BCB23001), and the Key Program of Science and Technology Department of Jiangxi Province (No. 20161ACE50021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmin Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 22, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yu, A., Zheng, B. et al. Microstructure Evolution of a Semisolid Magnesium Alloy Slurry Obtained via an Internal Rapid Cooling Stirring Process (IRCSP). Metall Mater Trans B 51, 2895–2904 (2020). https://doi.org/10.1007/s11663-020-01956-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01956-z

Navigation