Skip to main content
Log in

Effect of Coarse Eutectic-Originated Particles on the Microstructure and Properties of the Friction Stir-Processed Al-Mg-Zr-Sc-Based Alloys

  • Solid-state Processing of Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Friction stir processing (FSP) is a promising technique to refine grains and improve the mechanical properties of metallic materials. The current work compares a FSP-ed Al-Mg-Sc-Zr-alloy with fine nanoscale L12-structured Al3(Sc,Zr) precipitates and an alloy modified by 0.9 wt.%Fe-0.9 wt.%Ni containing both fine Al3(Sc,Zr) and coarse Al9FeNi-phase particles of solidification origin. The influences of both secondary-phase particles and FSP parameters on the microstructure, mechanical properties, and superplasticity of the alloys were examined. During FSP, the temperature increased to ~ 520°C, a mean size of the Al3(Sc,Zr) precipitates increased from 12 nm to 31 nm, whereas a size of the Al9FeNi particles decreased from 1.9 ± 0.1 µm to 1.1 ± 0.1 µm and exhibited a uniform distribution in the matrix. The reference alloy with fine Al3(Sc,Zr) precipitates exhibited a non-uniform partially recrystallized grain structure, whereas the modified alloy with both fine Al3(Sc,Zr) and coarse Al9FeNi-particles exhibited equiaxed fine grains after FSP. In the stirred zone of the reference and modified alloys, the average grain size was 3.3 ± 0.1 µm and 4.0 ± 0.3 µm, respectively. As a result, the modified alloy exhibited an improvement in ultimate tensile strength and elongation-to-fracture compared with the reference alloy by 22% and 40%, respectively. The fine Al3(Sc,Zr) and coarse Al9FeNi particles and their uniform distribution after FSP provided effective grain refinement by Zener pinning and particle-stimulated nucleation mechanisms resulting in the modified alloy's high strain rate superplasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.G. Kaufman and E.L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications (Asm International, Almere, 2004).

    Book  Google Scholar 

  2. A.J. Barnes, J. Mater. Eng. Perform. 16, 440 (2007).

    Article  Google Scholar 

  3. X. Wang, Q. Li, R. Wu, X. Zhang, and L. Ma, Adv. Mater. Sci. Eng. 2018, 1 (2018).

    Google Scholar 

  4. R. Grimes, In Superplast. Form. Adv. Met. Mater. (2011), pp. 247

  5. H. Mirzadeh, Mater. Sci. Eng. A 819, 141499 (2021).

    Article  Google Scholar 

  6. L. Bhatta, A. Pesin, A.P. Zhilyaev, P. Tandon, C. Kong, and H. Yu, Metals (Basel) 10, 77 (2020).

    Article  Google Scholar 

  7. Q. Zhang, X. Ju, J. Liu, L. Wang, Y. Li, H. Wang, and Z. Chen, Mater. Charact. 182, 111531 (2021).

    Article  Google Scholar 

  8. H. Masuda, T. Kanazawa, H. Tobe, and E. Sato, Scr. Mater. 149, 84 (2018).

    Article  Google Scholar 

  9. W. Zhang, H. Ding, M. Cai, W. Yang, and J. Li, Mater. Sci. Eng. A 727, 90 (2018).

    Article  Google Scholar 

  10. W.T. Huo, J.T. Shi, L.G. Hou, and J.S. Zhang, J. Mater. Process. Technol. 239, 303 (2017).

    Article  Google Scholar 

  11. T.G. Langdon, J. Mater. Sci. 42, 3388 (2007).

    Article  Google Scholar 

  12. K. Higashi, Mater. Sci. Technol. 16, 1320 (2000).

    Article  Google Scholar 

  13. T.G. Langdon, Mater. Trans. JIM 40, 716 (1999).

    Article  Google Scholar 

  14. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, CIRP Ann. 57, 716 (2008).

    Article  Google Scholar 

  15. R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng. R Rep. 50, 1 (2005).

    Article  Google Scholar 

  16. X.C. Luo, D.T. Zhang, G.H. Cao, C. Qiu, and D.L. Chen, Mater. Sci. Eng. A 759, 234 (2019).

    Article  Google Scholar 

  17. I. Charit and R.S. Mishra, J. Mater. Res. 19, 3329 (2004).

    Article  Google Scholar 

  18. Z.Y. Ma, R.S. Mishra, and F.C. Liu, Mater. Sci. Eng. A 505, 70 (2009).

    Article  Google Scholar 

  19. V.V. Patel, V. Badheka, and A. Kumar, Metallogr. Microstruct. Anal. 5, 278 (2016).

    Article  Google Scholar 

  20. E.A. El-Danaf, M.M. El-Rayes, and M.S. Soliman, Bull. Mater. Sci. 34, 1447 (2011).

    Article  Google Scholar 

  21. I. Charit and R.S. Mishra, Mater. Sci. Eng. A 359, 290 (2003).

    Article  Google Scholar 

  22. I. Charit and R.S. Mishra, Acta Mater. 53, 4211 (2005).

    Article  Google Scholar 

  23. Z.Y. Ma, R.S. Mishra, and M.W. Mahoney, Acta Mater. 50, 4419 (2002).

    Article  Google Scholar 

  24. F.C. Liu, B.L. Xiao, K. Wang, and Z.Y. Ma, Mater. Sci. Eng. A 527, 4191 (2010).

    Article  Google Scholar 

  25. V.V. Patel, V. Badheka, and A. Kumar, J. Mater. Process. Technol. 240, 68 (2017).

    Article  Google Scholar 

  26. V.V. Patel, V. Badheka, and A. Kumar, Mater. Manuf. Process. 31, 1573 (2016).

    Article  Google Scholar 

  27. A. Smolej, D. Klobčar, B. Skaza, A. Nagode, E. Slaček, V. Dragojević, and S. Smolej, Mater. Sci. Eng. A 590, 239 (2014).

    Article  Google Scholar 

  28. P. Schempp, C.E. Cross, R. Häcker, A. Pittner, and M. Rethmeier, Weld. World 57, 293 (2013).

    Google Scholar 

  29. X. Chen, G. Huang, S. Liu, T. Han, B. Jiang, A. Tang, Y. Zhu, and F. Pan, Trans. Nonferrous Met. Soc. China 29, 437 (2019).

    Article  Google Scholar 

  30. Y. Filatov, V. Yelagin, and V. Zakharov, Mater. Sci. Eng. A 280, 97 (2000).

    Article  Google Scholar 

  31. A. Nokhrin, I. Shadrina, V. Chuvildeev, and V. Kopylov, Mater. (Basel). 12, 316 (2019).

    Article  Google Scholar 

  32. G. Li, N. Zhao, T. Liu, J. Li, C. He, C. Shi, E. Liu, and J. Sha, Mater. Sci. Eng. A 617, 219 (2014).

    Article  Google Scholar 

  33. Y. Kwon and N.S. Shigematsu, Scr. Mater. 49, 785 (2003).

    Article  Google Scholar 

  34. K. N. Kalashnikov, T. A. Kalashnikova, A. V. Chumaevskii, A. N. Ivanov, S. Y. Tarasov, V. E. Rubtsov, and E. A. Kolubaev, in (2017), p. 020075

  35. A.V. Mikhaylovskaya, A.G. Mochugovskiy, V.S. Levchenko, N.Y. Tabachkova, W. Mufalo, and V.K. Portnoy, Mater. Charact. 139, 30 (2018).

    Article  Google Scholar 

  36. J. Robson, Acta Mater. 52, 1409 (2004).

    Article  Google Scholar 

  37. Y. Buranova, V. Kulitskiy, M. Peterlechner, A. Mogucheva, R. Kaibyshev, S.V. Divinski, and G. Wilde, Acta Mater. 124, 210 (2017).

    Article  Google Scholar 

  38. A.A. Kishchik, A.V. Mikhaylovskaya, A.D. Kotov, O.V. Rofman, and V.K. Portnoy, Mater. Sci. Eng. A 718, 190 (2018).

    Article  Google Scholar 

  39. Q.H.C. Snippe and T. Meinders, Mater. Sci. Eng. A 528, 950 (2011).

    Article  Google Scholar 

  40. A. Kumar, A.K. Mukhopadhyay, and K.S. Prasad, Mater. Sci. Eng. A 527, 854 (2010).

    Article  Google Scholar 

  41. M.E. van Dalen, T. Gyger, D.C. Dunand, and D.N. Seidman, Acta Mater. 59, 7615 (2011).

    Article  Google Scholar 

  42. C. Booth-Morrison, D.C. Dunand, and D.N. Seidman, Acta Mater. 59, 7029 (2011).

    Article  Google Scholar 

  43. E. Nes, N. Ryum, and O. Hunderi, Acta Metall. 33, 11 (1985).

    Article  Google Scholar 

  44. T.G. Nieh, L.M. Hsiung, J. Wadsworth, and R. Kaibyshev, Acta Mater. 46, 2789 (1998).

    Article  Google Scholar 

  45. F.C. Liu and Z.Y. Ma, Scr. Mater. 59, 882 (2008).

    Article  Google Scholar 

  46. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2012).

    Google Scholar 

  47. F.J. Humphreys, Met. Sci. 13, 136 (1979).

    Article  Google Scholar 

  48. P.S. Bate, F.J. Humphreys, N. Ridley, and B. Zhang, Acta Mater. 53, 3059 (2005).

    Article  Google Scholar 

  49. J.A. Wert, N.E. Paton, C.H. Hamilton, and M.W. Mahoney, Metall. Trans. A 12, 1267 (1981).

    Article  Google Scholar 

  50. A.V. Mikhaylovskaya, A.A. Kishchik, A.D. Kotov, O.V. Rofman, and N.Y. Tabachkova, Mater. Sci. Eng. A 760, 37 (2019).

    Article  Google Scholar 

  51. A.V. Mikhaylovskaya, O.A. Yakovtseva, V.V. Cheverikin, A.D. Kotov, and V.K. Portnoy, Mater. Sci. Eng. A 659, 225 (2016).

    Article  Google Scholar 

  52. A.D. Kotov, A.V. Mikhaylovskaya, M.S. Kishchik, A.A. Tsarkov, S.A. Aksenov, and V.K. Portnoy, J. Alloys Compd. 688, 336 (2016).

    Article  Google Scholar 

  53. A.V. Pozdniakov, R.Y. Barkov, S.M. Amer, V.S. Levchenko, A.D. Kotov, and A.V. Mikhaylovskaya, Mater. Sci. Eng. A 758, 28 (2019).

    Article  Google Scholar 

  54. A.V. Mikhaylovskaya, M.S. Kishchik, A.D. Kotov, and N.Y. Tabachkova, Mater. Lett. 321, 132412 (2022).

    Article  Google Scholar 

  55. T. Ding, H. Yan, J. Chen, W. Xia, and B. Su, Trans. Nonferrous Met. Soc. China 31, 3626 (2021).

    Article  Google Scholar 

  56. J. Wang, K. Yang, Y. Zhang, Y. Lu, Z. Bai, and X. Li, Mater. Charact. 179, 111352 (2021).

    Article  Google Scholar 

  57. M. Imam, Y. Sun, H. Fujii, N. Ma, S. Tsutsumi, S. Ahmed, V. Chintapenta, and H. Murakawa, Int. J. Adv. Manuf. Technol. 99, 663 (2018).

    Article  Google Scholar 

  58. S.S. Nene, S. Zellner, B. Mondal, M. Komarasamy, R.S. Mishra, R.E. Brennan, and K.C. Cho, Mater. Sci. Eng. A 729, 294 (2018).

    Article  Google Scholar 

  59. X. Yang, P. Dong, Z. Yan, B. Cheng, X. Zhai, H. Chen, H. Zhang, and W. Wang, J. Alloys Compd. 836, 155411 (2020).

    Article  Google Scholar 

  60. Z.G. Zhu, Y.F. Sun, F.L. Ng, M.H. Goh, P.K. Liaw, H. Fujii, Q.B. Nguyen, Y. Xu, C.H. Shek, S.M.L. Nai, and J. Wei, Mater. Sci. Eng. A 711, 524 (2018).

    Article  Google Scholar 

  61. N. Nadammal, S.V. Kailas, J. Szpunar, and S. Suwas, Metall. Mater. Trans. A 48, 4247 (2017).

    Article  Google Scholar 

  62. R.A. Behnagh, N. Shen, M. Abdollahi, and H. Ding, Procedia CIRP 45, 243 (2016).

    Article  Google Scholar 

  63. V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, in Cast. Alum. Alloy. (Elsevier, 2007), pp. 95

  64. A.V. Mikhaylovskaya, M. Esmaeili Ghayoumabadi, and A.G. Mochugovskiy, Mater. Sci. Eng. A 817, 141319 (2021).

    Article  Google Scholar 

  65. B. Li, Q. Pan, X. Huang, and Z. Yin, Mater. Sci. Eng. A 616, 219 (2014).

    Article  Google Scholar 

  66. G. Xu, X. Cao, T. Zhang, Y. Duan, X. Peng, Y. Deng, and Z. Yin, Mater. Sci. Eng. A 672, 98 (2016).

    Article  Google Scholar 

  67. Y.L. Duan, L. Tang, Y. Deng, X.W. Cao, G.F. Xu, and Z.M. Yin, Mater. Sci. Eng. A 669, 205 (2016).

    Article  Google Scholar 

  68. A.G. Mochugovskiy and A.V. Mikhaylovskaya, Mater. Lett. 275, 128096 (2020).

    Article  Google Scholar 

  69. F. Khodabakhshi, A. Simchi, A.H. Kokabi, A.P. Gerlich, and M. Nosko, Mater. Sci. Eng. A 642, 204 (2015).

    Article  Google Scholar 

  70. M.V. Markushev, E.V. Avtokratova, O.S. Sitdikov, M.L. Linderov, D.L. Merson, A. Vinogradov, and I.O.P. Conf, Ser. Mater. Sci. Eng. 672, 012041 (2019).

    Google Scholar 

  71. E.V. Aryshnskii, V.Y. Bazhin, and R. Kawalla, Non-Ferrous Met. 1, 28 (2019).

    Article  Google Scholar 

  72. V. Kulitskiy, S. Malopheyev, S. Mironov, and R. Kaibyshev, Mater. Sci. Eng. A 674, 480 (2016).

    Article  Google Scholar 

  73. K. Knipling, Acta Mater. 56, 1182 (2008).

    Article  Google Scholar 

  74. L. Jiang, Z. Zhang, Y. Bai, S. Li, and W. Mao, Crystals 12, 673 (2022).

    Article  Google Scholar 

  75. N. Hansen, Scr. Mater. 51, 801 (2004).

    Article  Google Scholar 

  76. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T. Langdon, Acta Mater. 50, 553 (2002).

    Article  Google Scholar 

  77. A.G. Mochugovskiy, A.V. Mikhaylovskaya, N.Y. Tabachkova, and V.K. Portnoy, Mater. Sci. Eng. A 744, 195 (2019).

    Article  Google Scholar 

  78. P.A. Manohar, M. Ferry, and T. Chandra, ISIJ Int. 38, 913 (1998).

    Article  Google Scholar 

  79. F.J. Humphreys, Acta Mater. 45, 5031 (1997).

    Article  Google Scholar 

  80. K.V. Jata and S.L. Semiatin, Scr. Mater. 43, 743 (2000).

    Article  Google Scholar 

  81. A.L. Etter, T. Baudin, N. Fredj, and R. Penelle, Mater. Sci. Eng. A 445–446, 94 (2007).

    Article  Google Scholar 

  82. X. Sauvage, A. Dédé, A.C. Muñoz, and B. Huneau, Mater. Sci. Eng. A 491, 364 (2008).

    Article  Google Scholar 

  83. N. Nadammal, S.V. Kailas, J. Szpunar, and S. Suwas, Metall. Mater. Trans. A 46, 2823 (2015).

    Article  Google Scholar 

  84. D. Jacquin and G. Guillemot, J. Mater. Process. Technol. 288, 116706 (2021).

    Article  Google Scholar 

  85. L. Zhang, C.Y. Liu, and H.Y. Xie, Mater. Charact. 194, 112472 (2022).

    Article  Google Scholar 

  86. A. Kalinenko, V. Mishin, I. Shishov, S. Malopheyev, I. Zuiko, V. Novikov, S. Mironov, R. Kaibyshev, and S.L. Semiatin, Mater. Charact. 194, 112473 (2022).

    Article  Google Scholar 

  87. M. Sahu and S. Ganguly, Intermetallics 151, 107734 (2022).

    Article  Google Scholar 

  88. H.W. Liu, F. Wang, B.Q. Xiong, Y.A. Zhang, Z.H. Li, X.W. Li, and S.H. Huang, Adv. Mater. Res. 988, 156 (2014).

    Article  Google Scholar 

  89. M. Motyka, J. Sieniawski, and W. Ziaja, Mater. Sci. Eng. A 599, 57 (2014).

    Article  Google Scholar 

  90. N. Kumar, R.S. Mishra, C.S. Huskamp, and K.K. Sankaran, Mater. Sci. Eng. A 528, 5883 (2011).

    Article  Google Scholar 

  91. Z.Y. Ma, R.S. Mishra, M.W. Mahoney, and R. Grimes, Metall. Mater. Trans. A 36, 1447 (2005).

    Article  Google Scholar 

  92. M.A. García-Bernal, R.S. Mishra, R. Verma, and D. Hernández-Silva, Scr. Mater. 60, 850 (2009).

    Article  Google Scholar 

  93. Y.B. Sun, X.P. Chen, J. Xie, C. Wang, Y.F. An, and Q. Liu, Mater. Today Commun. 33, 104217 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by the RSF Grant # 22-79-00215. The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia V. Mikhaylovskaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosleh, A.O., Yakovtseva, O.A., Kishchik, A.A. et al. Effect of Coarse Eutectic-Originated Particles on the Microstructure and Properties of the Friction Stir-Processed Al-Mg-Zr-Sc-Based Alloys. JOM 75, 2989–3000 (2023). https://doi.org/10.1007/s11837-023-05712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05712-x

Navigation