Skip to main content

Advertisement

Log in

Honeycomb-Like Carbon with Tunable Pore Size from Biomass Phoenix Dactylifera Midrib for Highly Compressible Binder-Free Supercapacitors

  • 2d Materials – Preparation, Properties & Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Developing high-performance supercapacitors with low-cost, high-energy density and high-power electrode material is highly desirable and remains a major challenge. In this study, an electrode material with a honeycomb structure was prepared using Phoenix dactylifera or date midrib (DM) biomass as a precursor through the activation process of KOH and CO2. Its pore structure can be adjusted by varying the temperature of CO2 activation at 700°C, 800°C and 900°C. The resulting electrode has a unique and efficient pore structure and regulation and has great potential for supercapacitor applications. The DM-800 electrode (temperature of CO2 activation at 800°C) shows a highest specific capacitance of 227.84 Fg−1 at a current density of 1 A g−1, and it has a carbon purity with a high atomic percentage of 90.16%. A supercapacitor cell is also designed similar with a sandwich on a symmetrical two-electrode system in a 1 M H2SO4 atmosphere producing specific energy of 10.42 Wh kg−1 at a specific power of 133.33 W kg−1. Therefore, this method can produce carbon electrodes with honeycomb-like structures and engineered pores for high-performance energy storage and conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.R. Kharangarh, N.M. Ravindra, R. Rawal, A. Singh, and V. Gupta, J. Alloys Compd. 876, 159990 (2021).

    Article  Google Scholar 

  2. M. Jalalah, S. Sankari, B. Aljafari, M. Irfan, S.S. Almasabi, T. Alsuwian, M. Iqbal, A. Kumar, and F.A. Harraz, J. Energy Storage 54, 105210 (2022).

    Article  Google Scholar 

  3. K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials I (Springer, India, 2020), pp53–87.

    Book  Google Scholar 

  4. Y. Shao, Y. Liu, Q. Guan, and C. Ding, Mater. Lett. 323, 132580 (2022).

    Article  Google Scholar 

  5. M.A. Scibioh, and B. Viswanathan, Electrode Materials for Supercapacitors (Elsevier, India, 2020), pp35–204.

    Google Scholar 

  6. T.R. Kumar, R.A. Senthil, Z. Pan, J. Pan, and Y. Sun, J. Energy Storage 32, 101903 (2020).

    Article  Google Scholar 

  7. Y. Wang, Q. Qu, S. Gao, G. Tang, and K. Liu, Carbon N. Y. 155, 706 (2019).

    Article  Google Scholar 

  8. L. Jiang, L. Sheng, and Z. Fan, Sci. China Mater. 5, 61 (2017).

    Google Scholar 

  9. F. Ran, X. Yang, and L. Shao, Adv. Compos. Hybrid Mater. 1, 32 (2018).

    Article  Google Scholar 

  10. G.K. Gupta, P. Sagar, S.K. Pandey, M. Srivastava, A.K. Singh, J. Singh, A. Srivastava, S.K. Srivastava, and A. Srivastava, Nanoscale Res. Lett. 16, 85 (2021).

    Article  Google Scholar 

  11. C. Ma, J. Bai, M. Demir, X. Hu, S. Liu, and L. Wang, Fuel 326, 125119 (2022).

    Article  Google Scholar 

  12. M. Vinayagam, R. Suresh Babu, A. Sivasamy, and A.L. Ferreira de Barros, Biomass Bioenergy 143, 105838 (2020).

    Article  Google Scholar 

  13. R. Farma, and A. Awitdrus, E. Taer 10, 26 (2021).

    Google Scholar 

  14. J. He, D. Zhang, M. Han, X. Liu, Y. Wang, Y. Li, X. Zhang, K. Wang, H. Feng, and Y. Wang, J. Energy Storage 21, 94 (2019).

    Article  Google Scholar 

  15. S.M. Mirmehdi, A. Omidvar, and M. Madhoushi, J. For. Wood Prod. 5, 1 (2011).

    Google Scholar 

  16. T. Chen, L. Luo, L. Luo, J. Deng, X. Wu, M. Fan, G. Du, and W. Zhao, Renew. Energy 175, 760 (2021).

    Article  Google Scholar 

  17. Y. Dong, W. Wang, H. Quan, Z. Huang, D. Chen, and L. Guo, ChemElectroChem 3, 814 (2016).

    Article  Google Scholar 

  18. R. Farma, I. Apriyani, A. Awitdrus, E. Taer, and A. Apriwandi, Sci. Rep. 12, 1 (2022).

    Article  Google Scholar 

  19. Z. Dai, P.G. Ren, W. He, X. Hou, F. Ren, Q. Zhang, and Y.L. Jin, Renew. Energy 162, 613 (2020).

    Article  Google Scholar 

  20. M.A. Islam, H.L. Ong, A.R. Villagracia, K.A. Khairul, A.B. Ganganboina, and R.A. Doong, Ind. Crops Prod. 170, 113694 (2021).

    Article  Google Scholar 

  21. A. Gopalakrishnan, and S. Badhulika, J. Power Sources 480, 228830 (2020).

    Article  Google Scholar 

  22. J. Zhang, S. Song, J. Xue, P. Li, Z. Gao, and Y. Li, Sci. Rep. 13, 5204 (2018).

    Google Scholar 

  23. R. Farma, H. Husni, I. Apriyani, A. Awitdrus, and E. Taer, J. Electron. Mater. 50, 6910 (2021).

    Article  Google Scholar 

  24. D. Qu, J. Power Sources 109, 403 (2002).

    Article  Google Scholar 

  25. A.R. Selvaraj, A. Muthusamy, H.J. Kim, K. Senthil, and K. Prabakar, Carbon 174, 463 (2021).

    Article  Google Scholar 

  26. R.T. Ayinla, J.O. Dennis, H.M. Zaid, Y.K. Sanusi, F. Usman, and L.L. Adebayo, J. Clean. Prod. 229, 1427 (2019).

    Article  Google Scholar 

  27. M. Cao, Q. Wang, W. Cheng, S. Huan, Y. Hu, Z. Niu, G. Han, H. Cheng, and G. Wang, Carbon N. Y. 179, 68 (2021).

    Article  Google Scholar 

  28. Q. Wang, T. Xia, X. Jia, J. Zhao, Q. Li, C. Ao, X. Deng, X. Zhang, W. Zhang, and C. Lu, Carbohydr. Polym. 245, 116554 (2020).

    Article  Google Scholar 

  29. M. Ma, W. Cai, Y. Chen, Y. Li, F. Tan, and J. Zhou, Ind. Crops Prod. 166, 113472 (2021).

    Article  Google Scholar 

  30. Q. Wang, B. Qin, H.X. Li, X.H. Zhang, X. Tian, L. Jin, and Q. Cao, Microporous Mesoporous Mater. 309, 110551 (2020).

    Article  Google Scholar 

  31. J. Serafin, M. Baca, M. Biegun, E. Mijowska, R.J. Kaleńczuk, J. Sreńscek-Nazzal, and B. Michalkiewicz, Appl. Surf. Sci. 497, 143722 (2019).

    Article  Google Scholar 

  32. E. Lei, J. Sun, W. Gan, Z. Wu, Z. Xu, L. Xu, C. Ma, W. Li, and S. Liu, J. Energy Storage 38, 102414 (2021).

    Article  Google Scholar 

  33. M.M. Baig, and I.H. Gul, Biomass Bioenerg. 144, 105909 (2021).

    Article  Google Scholar 

  34. F.R.M.S. Raj, G. Boopathi, N.V. Jaya, D. Kalpana, and A. Pandurangan, Diam. Relat. Mater. 102, 107687 (2020).

    Article  Google Scholar 

  35. C. Jiang, G.A. Yakaboylu, T. Yumak, J.W. Zondlo, E.M. Sabolsky, and J. Wang, Renew. Energy 155, 38 (2020).

    Article  Google Scholar 

  36. R. Srinivasan, E. Elaiyappillai, H.P. Pandian, R. Vengudusamy, P.M. Johnson, S.M. Chen, and R. Karvembu, J. Electroanal. Chem. 849, 113382 (2019).

    Article  Google Scholar 

  37. J. Ding, Y. Zhang, Y. Huang, X. Wang, Y. Sun, Y. Guo, D. Jia, and X. Tang, J. Alloys Compd. 851, 156791 (2021).

    Article  Google Scholar 

  38. Y.L. Zhang, S.Y. Li, Z.S. Tang, Z. Xing Song, and J. Sun, Diam. Relat. Mater. 91, 119 (2019).

    Article  Google Scholar 

  39. S.J. Rajasekaran, and V. Raghavan, Diam. Relat. Mater. 109, 108038 (2020).

    Article  Google Scholar 

  40. X. Tang, D. Liu, Y.J. Wang, L. Cui, A. Ignaszak, Y. Yu, and J. Zhang, Prog. Mater. Sci. 118, 100770 (2021).

    Article  Google Scholar 

  41. K. Le Van, and T.T. Luong Thi, Prog. Nat. Sci. Mater. Int. 24, 191 (2014).

    Article  Google Scholar 

  42. J. Zhao, Y. Li, G. Wang, T. Wei, Z. Liu, K. Cheng, K. Ye, K. Zhu, D. Cao, and Z. Fan, J. Mater. Chem. A 5, 23085 (2017).

    Article  Google Scholar 

  43. X. Yang, Q. Wang, J. Lai, Z. Cai, J. Lv, X. Chen, Y. Chen, X. Zheng, B. Huang, and G. Lin, Mater. Chem. Phys. 250, 123201 (2020).

    Article  Google Scholar 

  44. N. Guo, W. Luo, R. Guo, D. Qiu, Z. Zhao, L. Wang, D. Jia, and J. Guo, J. Alloys Compd. 834, 155115 (2020).

    Article  Google Scholar 

  45. W. Shi, B. Chang, H. Yin, S. Zhang, B. Yang, and X. Dong, Sustain. Energy Fuels 3, 1201 (2019).

    Article  Google Scholar 

  46. D. Gandla, H. Chen, and D.Q. Tan, Mater. Res. Express 7, 8 (2020).

    Article  Google Scholar 

  47. R.D. Oliveira, C.S. Santos, J.R. Garcia, M. Vidotti, L.F. Marchesi, and C.A. Pessoa, J. Electroanal. Chem. 878, 114662 (2020).

    Article  Google Scholar 

  48. P. Dai, S. Zhang, H. Liu, L. Yan, X. Gu, L. Li, D. Liu, and X. Zhao, Electrochim. Acta 354, 136717 (2020).

    Article  Google Scholar 

  49. W. Sun, Y. Zhang, and F. Yang, Energy Technol. 9, 1 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the DRPM Kemenristek/BRIN, Republic of Indonesia, for financial support through second year project of Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT), with Contract Number: 1659/ UN.19.5.1.3/PT.01.03/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhmawati Farma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farma, R., Nur’aini, N., Apriyani, I. et al. Honeycomb-Like Carbon with Tunable Pore Size from Biomass Phoenix Dactylifera Midrib for Highly Compressible Binder-Free Supercapacitors. JOM 75, 708–717 (2023). https://doi.org/10.1007/s11837-022-05667-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05667-5

Navigation