Skip to main content
Log in

Distribution Behaviors of As, Sb, Bi, Sn, Se, Te, Au and Ag Between Cu and Liquid Metal Phases in the Cu-Pb Binary System at 500–1080°C

  • High-temperature Phases and Processes for Enabling Cleaner Production of Metals and Energy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The present study focused on the Cu-Pb system and investigating the distribution behaviors of various minor elements through the equilibration-quenching-EPMA analysis experimental technique. Obtained results showed that: (1) An intermetallic compound consisting mainly of Cu-Pb-Se-Te formed below 956°C. (2) As, Sb and Sn had similar distribution behaviors, which mainly entered the solid Cu phase at the temperature range of 500–900°C, but became concentrated in the liquid alloy phase at temperature range of 900–1060°C, and their distribution ratios increased along with increasing temperature. (3) Bi was mainly found in the liquid alloy phase, and its distribution ratio ranged from 6.8 to 836.5 at the experimental conditions. (4) Se and Te formed an intermetallic alloy phase under 900°C, and they enriched in the liquid alloy phase between 960°C and 1060°C. (5) Au was mainly found in the solid Cu phase at the temperature range of 500–900°C, and its distribution ratio was about 1.5 at 900–1060°C. The distribution ratio of Ag decreased from 8.7 to 2.3 when increasing the temperature from 500°C to 1060°C. Distribution behavior of As, Sb, Bi and Sn is consistent with their interfacial enthalpies with Cu and Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.E. Schlesinger, M.J. King, K.C. Sole, and W.G. Davenport, Extractive Metallurgy of Copper, 5th edn. (Elsevier, Oxford, 2011), pp73–88.

    Book  Google Scholar 

  2. R.J. Sinclair, The Extractive Metallurgy of Lead, first edition, (Carlton Victoria: AusIMM, 2009), pp. 129–149.

  3. P. García, S. Rivera, M. Palacios, and J. Belzunce, Eng. Fail. Anal. 17, 771 (2010).

    Article  Google Scholar 

  4. S. Yadav, S. Sarkar, A. Aggarwal, A. Kumar, and K. Biswas, Wear 410, 93 (2018).

    Article  Google Scholar 

  5. A.S. Sharma, S. Yadav, K. Biswas, and B. Basu, Mater. Sci. Eng. R-Rep. 131, 1 (2018).

    Article  Google Scholar 

  6. C.L. Chen, L. Zhang, S. Wright and S. Jahanshahi, Thermodynamic modelling of minor elements in copper smelting processes, (Sohn International Symposium Advanced Processing of Metals and Materials, 2006).

  7. X. Yang, Z. Han, Y. Guo, and M. Xu, China Nonferr Metall. 47, 8 ((In Chinese)) (2018).

    Google Scholar 

  8. L. Xia, Z. Yu, G. Xu, and Z. Liu, JOM 74, 195 (2022).

    Article  Google Scholar 

  9. R.Q. Peng, Lead Metallurgy (Central South University Press, Changsha, 2004).

    Google Scholar 

  10. J. Cui, and L. Zhang, J. Hazard. Mater. 158, 228 (2008).

    Article  Google Scholar 

  11. L. Zuo, C. Wang, G.D. Corder, and Q. Sun, Resour. Conserv. Recycl. 149, 261 (2019).

    Article  Google Scholar 

  12. L. Zuo, C. Wang, and Q. Sun, Waste Manage. 101, 222 (2020).

    Article  Google Scholar 

  13. I. Billard, Curr. Opin. Green Sustain. Chem. 18, 37 (2019).

    Article  Google Scholar 

  14. C. Hagelüken, World of Metallurgy – ERZMETALL, 59, 152 (2006).

  15. L.G. Zhang, and Z.M. Xu, J. Clean Prod. 127, 19 (2016).

    Article  Google Scholar 

  16. E. Jak, and P.C. Hayes, Miner. Process Extr Metall. 117, 1 (2013).

    Article  Google Scholar 

  17. T. Hidayat, J. Chen, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B 50, 229 (2018).

    Article  Google Scholar 

  18. D. Shishin, T. Hidayat, J. Chen, P.C. Hayes, and E. Jak, J. Chem. Thermodyn. 135, 175 (2019).

    Article  Google Scholar 

  19. D. Sukhomlinov, L. Klemettinen, K. Avarmaa, H. O’brien, P. Taskinen and A. Jokilaakso, Metall. Mater. Trans. B, 50, 1752 (2019).

  20. K. Avarmaa, H. Johto, and P. Taskinen, Metall. Mater. Trans. B 47, 244 (2015).

    Article  Google Scholar 

  21. K. Avarmaa, H. O’Brien, H. Johto, and P. Taskinen, J. Sust. Metall. 1, 216 (2015).

    Article  Google Scholar 

  22. K. Avarmaa, H. O’Brien and P. Taskinen, Equilibria of gold and silver between molten copper and FeOx‐SiO2‐Al2O3 slag in Weee smelting at 1300°C, in Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts, 2016.

  23. M.D. Johnston, S. Jahanshahi, and F.J. Lincoln, Metall. Mater. Trans. B 38, 433 (2007).

    Article  Google Scholar 

  24. T. Hidayat, J. Chen, P.C. Hayes, and E. Jak, Int. J. Mater. Res. 112, 178 (2021).

    Article  Google Scholar 

  25. M.A. Shuva, M.A. Rhamdhani, G.A. Brooks, S. Masood, and M.A. Reuter, J. Clean Prod. 131, 795 (2016).

    Article  Google Scholar 

  26. K. Yamaguchi, and Y. Takeda, Shigen-to-Sozai 113, 1110 (1997).

    Article  Google Scholar 

  27. K. Yamaguchi, T. Ohara, S. Ueda, and Y. Takeda, Metall. Trans. 47, 1864 (2006).

    Google Scholar 

  28. L. Voisin, H.M. Henao, and K. Itagaki, Metall. Trans. 45, 2851 (2004).

    Google Scholar 

  29. M. Nakamoto, Y. Tanaka, S. Tagaki, T. Tanaka, and T. Yamamoto, ISIJ Int. 53, 551 (2013).

    Article  Google Scholar 

  30. B. Chen, J. He, X.J. Sun, J.Z. Zhao, H.X. Jiang, L.L. Zhang, and H.R. Hao, Acta Metall. Sin. 55, 751 (2019).

    Google Scholar 

  31. B. Chen, J. He, Y. Xi, X. Zeng, I. Kaban, J. Zhao, and H. Hao, J. Hazard. Mater 364, 388 (2019).

    Article  Google Scholar 

  32. B. Chen, J. He, X. Sun, J. Zhao, H. Jiang, and L. Zhang, Waste Manag. 107, 113 (2020).

    Article  Google Scholar 

  33. B. Chen, J. He, and J.Z. Zhao, Mater. Sci. Forum 944, 1265 (2019).

    Article  Google Scholar 

  34. L. Voisin, G. Damm, and T. Okura, Metall. Mater. Trans. B 46, 680 (2014).

    Article  Google Scholar 

  35. X. Lu, K. Nakajima, H. Sakanakura, K. Matsubae, H. Bai, and T. Nagasaka, Waste Manag. 32, 1148 (2012).

    Article  Google Scholar 

  36. K. Yamaguchi, and Y. Takeda, Mater. Trans. 44, 2452 (2003).

    Article  Google Scholar 

  37. M. Chen, K. Avarmaa, L. Klemettinen, J. Shi, P. Taskinen, and A. Jokilaakso, Metall. Mater. Trans. B 51, 1552 (2020).

    Article  Google Scholar 

  38. L. Xia, Z. Liu, and P. Taskinen, J. Am. Ceram. Soc. 99, 3809 (2016).

    Article  Google Scholar 

  39. B. Onderka and L.A. Zabdyr, Scand. J. Metall. 30, 320 (2001).

    Article  Google Scholar 

  40. M. Shevchenko, S. Nicol, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B 49, 1690 (2018).

    Article  Google Scholar 

  41. F.R. De Boer, R. Boom, W.C.M Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals: Transition Metal Alloys, (Netherlands, Amsterdam, 1989).

  42. H. Bakker, Enthalpies in Alloys: Miedema's Semi-empirical Model, (Materials Science Foundations, Trans Tech Publications, 1998).

  43. A. Takeuchi, and A. Inoue, Metall. Trans. 46, 2817 (2005).

    Google Scholar 

  44. R.F. Zhang, S.H. Zhang, Z.J. He, J. Jing, and S.H. Sheng, Comput. Phys. Commun. 209, 58 (2016).

    Article  MathSciNet  Google Scholar 

  45. M.S. Mousavi, R. Abbasi, and S.F. Kashani-Bozorg, Metall. Mater. Trans. A 47, 3761 (2016).

    Article  Google Scholar 

  46. D. Shishin, J. Chen, T. Hidayat, and E. Jak, J. Phase Equilib. Diffus. 40, 758 (2019).

    Article  Google Scholar 

  47. X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, J. Phase Equilib. 21, 432 (2000).

    Article  Google Scholar 

  48. H. Okamoto, J. Phase Equilib. Diffus. 32, 567 (2011).

    Article  Google Scholar 

  49. H. Okamoto; M.E. Schlesinger, E.M. Mueller, ASM Handbook - Alloy Phase Diagrams, (America: ASM International, 2016), pp. 60–1490.

  50. T.T. Chen, and J.E. Dutrizac, Can. Metall. Q. 42, 421 (2003).

    Article  Google Scholar 

  51. T.T. Chen, and J.E. Dutrizac, Can. Metall. Q. 35, 337 (1996).

    Article  Google Scholar 

  52. M.A. Evelyn, H.M. Cecilia, V. Joan, and G.S. Teofilo, Metall. Mater. Trans. B 47, 1315 (2015).

    Google Scholar 

  53. J.D. Scott, Metall. Trans. 21, 629 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the National Natural Science Foundation of China-Young Scientist Fund (No. 52004341) and the Major Science and Technology Projects in Gansu Province (No. 21ZD4GD033). The financial support from the “111” project (Green and Value-Added Metallurgy of Non-ferrous Resources) and Central South University Starting-up fund (Faculty No. 217030) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longgong Xia.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Liu, Z., Yu, Z. et al. Distribution Behaviors of As, Sb, Bi, Sn, Se, Te, Au and Ag Between Cu and Liquid Metal Phases in the Cu-Pb Binary System at 500–1080°C. JOM 75, 1515–1529 (2023). https://doi.org/10.1007/s11837-022-05633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05633-1

Navigation