Skip to main content
Log in

Effect of Explosive Loading Ratio on Microstructure and Mechanical Properties of Al 5052/AZ31B Explosive Weld Composite

  • Liquid Metal Processing of Al- and Mg-based Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Aluminum alloy (Al 5052) and magnesium alloy (AZ31B) plates were welded at different loading ratios (mass of explosive/mass of flyer plate, R = 0.7, 0.8, and 0.9) through explosive welding. The interface microstructure revealed a wavy interface for the attempted loading ratios, whereas, for a higher loading ratio (R = 0.9), cracks and pores were observed in the aluminum alloy (Al 5052). X-ray diffraction detected the presence of the Al12Mg17 compound at the interface for all the attempted conditions. The interface microhardness is directly proportional to the loading ratio. The maximum ram tensile strength (167 MPa) and shear strength (103 MPa) were obtained at a lower loading ratio (R = 0.7). Therefore, the satisfactory weld of the Al 5052/AZ31B composite plate was achieved at a lower loading ratio (R = 0.7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.R. GharehShiran, G. Khalaj, H. Pouraliakbar, M.R. Jandaghi, H. Bakhtiari, and M. Shirazi, Int. J. Miner. Metall. Mater. 24, 1267. https://doi.org/10.1007/s12613-017-1519-x (2017).

    Article  Google Scholar 

  2. S. Mroz, G. Stradomski, H. Dyja, and A. Galka, Arch. Civil Mech. Eng. 15(2), 317. https://doi.org/10.1016/j.acme.2014.12.003 (2015).

    Article  Google Scholar 

  3. S. Mroz, R. Mola, P. Szota, and A. Stefanik, Arch. Civil Mech. Eng. 20, 77. https://doi.org/10.1007/s43452-020-00084-4 (2020).

    Article  Google Scholar 

  4. Y. Li and Z. Wu, Metals 7, 125. https://doi.org/10.3390/met7040125 (2017).

    Article  Google Scholar 

  5. N. Zhang, W.X. Wang, X.Q. Cao, and J.Q. Wu, Mater. Des. 65, 1100. (2015).

    Article  Google Scholar 

  6. J. Hirsch and T. Samman, Acta. Mater. 61, 818. (2013).

    Article  Google Scholar 

  7. F.C. Liu, W. Liang, X.R. Li, X.G. Zhao, Y. Zhang, and H.X. Wang, J. Alloys Compd. 461, 399. (2008).

    Article  Google Scholar 

  8. G. Cam and S. Mistikoglu, J. Mater. Eng. Perform. 23, 1936. (2014).

    Article  Google Scholar 

  9. F. Liu, D.X. Ren, and L.M. Liu, Mater. Des. 46, 419. (2013).

    Article  Google Scholar 

  10. R. Borrisutthekul, Y. Miyashita, and Y. Mutoh, Sci. Technol. Adv. Mater. 6, 199. https://doi.org/10.1016/j.stam.2004.11.014 (2005).

    Article  Google Scholar 

  11. M. Joseph Fernandus, T. Senthilkumar, V. Balasubramanian, and R. Selvarajan, Mater. Des. 33, 31. https://doi.org/10.1016/j.matdes.2011.06.022 (2012).

    Article  Google Scholar 

  12. B. Zhu, W. Liang, and X.R. Li, Mater. Sci. Eng. A 528, 6584. (2011).

    Article  Google Scholar 

  13. M. Kawasaki, B. Ahn, H. Lee, A.P. Zhilyaev, and T.G. Langdon, J. Mater. Res. 31, 88. https://doi.org/10.1557/jmr.2015.257 (2016).

    Article  Google Scholar 

  14. S. Saravanan, K. Raghukandan, and K. Hokamoto, Arch. Civil Mech. Eng. 16, 563. (2016).

    Article  Google Scholar 

  15. M.A. Habib, H. Keno, R. Uchida, A. Mori, and K. Hokamoto, J. Mater. Process. Tech. 217, 310. (2015).

    Article  Google Scholar 

  16. Y.B. Yan, Z.W. Zhang, W. Shen, J.H. Wang, L.K. Zhang, and B.A. Chin, Mater. Sci. Eng. A527, 2241. https://doi.org/10.1016/j.msea.2009.12.007 (2010).

    Article  Google Scholar 

  17. S. Yang and J. Bao, JMEPEG 27, 1177. https://doi.org/10.1007/s11665-018-3174-4 (2018).

    Article  Google Scholar 

  18. X.-y Zeng, Y.-X. Wang, X.-q Li, X.-J. Li, and T.-J. Zhao, J. Manuf. Process. 45, 166. https://doi.org/10.1016/j.jmapro.2019.07.007 (2019).

    Article  Google Scholar 

  19. Z. Fang, Ch. Shi, H. Shi, and Z. Sun, Metals 9, 119. https://doi.org/10.3390/met9020119 (2019).

    Article  Google Scholar 

  20. M. Acarer, B. Demir, B. Dikici, and E. Salur, J. Mag. Alloys. https://doi.org/10.1016/j.jma.2021.08.009 (2022).

    Article  Google Scholar 

  21. P. Manikandan, K. Hokamoto, M. Fujita, K. Raghukandan, and R. Tomoshige, J. Mater. Process. Tech. 195, 232. https://doi.org/10.1016/j.jmatprotec.2007.05.002 (2008).

    Article  Google Scholar 

  22. P. Tamilchelvan, K. Raghukandan, and S. Saravanan, Iran. J. Sci. Tech. Trans. Mech. Eng. 38(1), 91. (2014).

    Google Scholar 

  23. S.A.A. Akbari Mousavi and S.T.S. Al-Hassani, Mater. Des. 29, 1. https://doi.org/10.1016/j.matdes.2006.12.012 (2008).

    Article  Google Scholar 

  24. S.A.A. Akbari Mousavi and P. Farhadi Sartangi, Mater. Des. 30, 459. https://doi.org/10.1016/j.matdes.2008.06.016 (2009).

    Article  Google Scholar 

  25. K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng, Mater. Sci. Eng. A 527, 3073. (2010).

    Article  Google Scholar 

  26. T. Zhang, W. Wang, W. Zhang, J. Zhou, and Z. Yan, J. Mater. Sci. 54, 9155. https://doi.org/10.1007/s10853-019-03529-1 (2019).

    Article  Google Scholar 

  27. S. Saravanan, K. Raghukandan, and P. Kumar, J. Cent. South Univ. 26, 604. https://doi.org/10.1007/s11771-019-4031-9 (2019).

    Article  Google Scholar 

  28. S.A.A. Akbari Mousavi and P.F. Sartangi, Mater. Sci. Eng. A 494, 329. (2008).

    Article  Google Scholar 

  29. I. Shigematsu, Y.J. Kwon, and N. Saito, Mater. Trans. 50(1), 197. (2009).

    Article  Google Scholar 

  30. H. Pouraliakbar, M.R. Jandaghi, A. Heidarzadeh, and M.M. Jandaghi, Mater. Chem. Phys. 206, 85. https://doi.org/10.1016/j.matchemphys.2017.12.010 (2018).

    Article  Google Scholar 

  31. M.S. Khorrami, M.A. Mostafaei, and H. Pouraliakbar, Mater. Sci. Eng. A 608, 35. https://doi.org/10.1016/j.msea.2014.04.065 (2014).

    Article  Google Scholar 

  32. V.I. Mali, A.A. Bataev, I.N. Maliutina, V.D. Kurguzov, I.A. Bataev, and M.A. Esikov, Int. J. Adv. Manuf. Tech. https://doi.org/10.1007/s00170-017-0887-8 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Ghosh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Ghosh, S.K., Saravanan, S. et al. Effect of Explosive Loading Ratio on Microstructure and Mechanical Properties of Al 5052/AZ31B Explosive Weld Composite. JOM 75, 167–175 (2023). https://doi.org/10.1007/s11837-022-05579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05579-4

Navigation