Skip to main content
Log in

Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ti/Ni alloy-based laminate composite materials were produced by explosive welding with two thin intermediate layers of tantalum and copper placed between Ti and Ni alloy layers. The influence of the thickness of the Cu interlayer (0.1–0.7 mm) on the structure and mechanical properties of the explosively welded composites was examined. Investigations carried out by optical and scanning electron microscopy showed the formation of an inhomogeneous structure in the vicinity of the interfaces with zones of local melting and cavities within these zones. The wavelength and the amplitude at the interface between the copper and tantalum interlayers changed with the thickness of the copper layer. In order to evaluate the mechanical properties of the composites containing copper interlayers of different thicknesses, microhardness, tensile, and bending tests were performed. As the thickness of the copper layer was decreased to 0.3 mm, the tensile and bending strengths of the laminate composites increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bataev IA, Bataev AA, Mali VI, Pavliukova DV (2012) Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing. Mater Design 35:225–234. doi:10.1016/j.matdes.2011.09.030

    Article  Google Scholar 

  2. Miriyev A, Barlam D, Shneck R, Stern A, Frage N (2014) Steel to titanium solid state joining displaying superior mechanical properties. J Mater Process Tech 214(12):2884–2890. doi:10.1016/j.jmatprotec.2014.06.026

    Article  Google Scholar 

  3. Dai X, Zhang H, Liu J, Feng J (2015) Microstructure and properties of Mg/Al joint welded by gas tungsten arc welding-assisted hybrid ultrasonic seam welding. Mater Design 77:65–71. doi:10.1016/j.matdes.2015.03.054

    Article  Google Scholar 

  4. Bataev IA, Hokamoto K, Keno H, Bataev AA, Balagansky IA, Vinogradov AV (2015) Metallic glass formation at the interface of explosively welded Nb and stainless steel. Met Mater Int. doi:10.1007/s12540-015-5020-7

  5. Nishida M, Chiba A, Morizono Y, Matsumoto M, Murakami T, Inoue A (1995) Formation of nonequilibrium phases at collision interface in an explosively welded Ti/Ni clad. Mater T JIM 36(11):1338–1343

    Article  Google Scholar 

  6. Fuji A, Horiuchi Y, Yamamoto K (2005) Friction welding of pure titanium and pure nickel. Sci Technol Weld Joi 10(3):287–294. doi:10.1179/174329305X40598

    Article  Google Scholar 

  7. Chatterjee S, Abinandanan TA, Chattopadhyay K (2008) Phase formation in Ti/Ni dissimilar welds. Mat Sci Eng-A 490(1–2):7–15. doi:10.1016/j.msea.2007.12.041

    Article  Google Scholar 

  8. Chatterjee S, Abinandanan TA, Chattopadhyay K (2006) Microstructure development during dissimilar welding: case of laser welding of Ti with Ni involving intermetallic phase formation. J Mater Sci 41(3):643–652. doi:10.1007/s10853-006-6480-4

    Article  Google Scholar 

  9. Chen HC, Pinkerton AJ, Li L (2011) Fibre laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications. Int J Adv Manuf Tech 52(9–12):977–987. doi:10.1007/s00170-010-2791-3

    Article  Google Scholar 

  10. Manikandan P, Hokamoto K, Deribas AA, Raghukandan K, Tomoshige R (2006) Explosive welding of titanium/stainless steel by controlling energetic conditions. Mater Trans 47(8):2049–2055. doi:10.2320/matertrans.47.2049

    Article  Google Scholar 

  11. Gao M, Mei SW, Wang ZM, Li XY, Zeng XY (2012) Characterisation of laser welded dissimilar Ti/steel joint using Mg interlayer. Sci Technol Weld Joi 17(4):269–276. doi:10.1179/1362171812Y.0000000002

    Article  Google Scholar 

  12. Mitelea I, Groza C, Craciunescu CM (2014) Pulsed laser processing of dissimilar Ti-6Al-4V and X5CrNi18-10 joints. Mater Manuf Process 29(8):975–979. doi:10.1080/10426914.2013.822978

    Article  Google Scholar 

  13. Maliutina IN, Stepanova NV, Cherkov AG, Chuchkova LV (2015) Welding of dissimilar materials with interlayers employment containing copper and tantalum. Obrabotka metallov (tehnologiya, oborudovanie, instrumenty) 4(69):61–71

    Google Scholar 

  14. Tomashchuk I, Grevey D, Sallamand P (2015) Dissimilar laser welding of AISI 316L stainless steel to Ti6-Al4-6V alloy via pure vanadium interlayer. Mat Sci Eng-A 622:37–45. doi:10.1016/j.msea.2014.10.084

    Article  Google Scholar 

  15. Cherepanov AN, Mali VI, Maliutina IN, Orishich AM, Malikov AG, Drozdov VO (2016) Laser welding of stainless steel to titanium using explosively welded composite inserts. Int J Adv Manuf Tech 90:3037–3043. doi:10.1007/s00170-016-9657-2

  16. Cherepanov AN, Orishich AM, Mali VI (2014) Laser welding of stainless steel with a titanium alloy with the use of a multilayer insert obtained in an explosion. Combust Explosion Shock Waves 50(4):483–487. doi:10.1134/S0010508214040182

    Article  Google Scholar 

  17. Elmer JW, Palmer TA, Brasher D, Butler D, Riddle R (2005) Development of an explosive bonding process for producing high strength bonds between niobium and 6061-T651 aluminum. Weld J (Miami, Fla):1–44

  18. Li HM, Sun DQ, Cai XL, Dong P, Wang WQ (2012) Laser welding of TiNi shape memory alloy and stainless steel using Ni interlayer. Mater Design 39:285–293. doi:10.1016/j.matdes.2012.02.031

    Article  Google Scholar 

  19. Ng CH, Mok ESH, Man HC (2015) Effect of Ta interlayer on laser welding of NiTi to AISI 316L stainless steel. J Mater Process Tech 226:69–77. doi:10.1016/j.jmatprotec.2015.06.039

    Article  Google Scholar 

  20. Shojaei Zoeram A, Akbari Mousavi SAA (2014) Effect of interlayer thickness on microstructure and mechanical properties of as welded Ti6Al4V/Cu/NiTi joints. Mater Lett 133:5–8. doi:10.1016/j.matlet.2014.06.141

    Article  Google Scholar 

  21. Liu F, Ren D, Liu L (2013) Effect of Al foils interlayer on microstructures and mechanical properties of Mg-Al butt joints welded by gas tungsten arc welding filling with Zn filler metal. Mater Design 46:419–425. doi:10.1016/j.matdes.2012.10.012

    Article  Google Scholar 

  22. Han JH, Ahn JP, Shin MC (2003) Effect of interlayer thickness on shear deformation behavior of AA5083 aluminum alloy/SS41 steel plates manufactured by explosive welding. J Mater Sci 38(1):13–18. doi:10.1023/A:1021197328946

    Article  Google Scholar 

  23. Gurevich L, Trykov Y, Pronichev D, Trunov M (2014) Investigation on the contact hardening of Al/steel laminated composites with soft interlayers. WSEAS Trans Appl Theor Mech 9(1):275–281

    Google Scholar 

  24. Manikandan P, Hokamoto K, Fujita M, Raghukandan K, Tomoshige R (2008) Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel. J Mater Process Tech 195(1–3):232–240. doi:10.1016/j.jmatprotec.2007.05.002

    Article  Google Scholar 

  25. Zakipour S, Samavatian M, Halvaee A, Amadeh A, Khodabandeh A (2015) The effect of interlayer thickness on liquid state diffusion bonding behavior of dissimilar stainless steel 316/Ti-6Al-4V system. Mater Lett 142:168–171. doi:10.1016/j.matlet.2014.11.158

    Article  Google Scholar 

  26. Bazarnik P, Adamczyk-Cieślak B, Gałka A, Płonka B, Snieżek L, Cantoni M, Lewandowska M (2016) Mechanical and microstructural characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 laminates manufactured by explosive welding. Mater Des 111:146–157. doi:10.1016/j.matdes.2016.08.088

    Article  Google Scholar 

  27. Hokamoto K, Izuma T, Fujita M (1993) New explosive welding technique to weld. Metall Trans A 24(10):2289–2297. doi:10.1007/BF02648602

    Article  Google Scholar 

  28. Saravanan S, Raghukandan K, Hokamoto K (2016) Improved microstructure and mechanical properties of dissimilar explosive cladding by means of interlayer technique. Arch Civ Mech Eng 16(4):563–568. doi:10.1016/j.acme.2016.03.009

    Article  Google Scholar 

  29. Saravanan S, Raghukandan K (2013) Influence of interlayer in explosive cladding of dissimilar metals. Mater Manuf Process 28(5):589–594. doi:10.1080/10426914.2012.736665

    Article  Google Scholar 

  30. ISO 6892–1:2016 Metallic materials. Tensile testing. Part 1: method of test at room temperature (2016). International Organization for Standardization

  31. ISO 5173:2009. Destructive tests on welds in metallic materials. Bend tests (2009). International Organization for Standardization

  32. Crossland B (1982) Explosive welding of metals and its application. Clarendon press, Oxford

    Google Scholar 

  33. Zacharenko ID (1990) Svarka metallov vzrivom (in Russian). Nauka i technika, Minsk

    Google Scholar 

  34. Kiselev SP, Mali VI (2012) Numerical and experimental modeling of jet formation during a high-velocity oblique impact of metal plates. Combust Explosion Shock Waves 48(2):214–225. doi:10.1134/S0010508212020116

    Article  Google Scholar 

  35. Murr LE, Pizaña C (2007) Dynamic recrystallization: the dynamic deformation regime. Metall Mater Trans A 38(11):2611–2628. doi:10.1007/s11661-007-9185-7

    Article  Google Scholar 

  36. Bataev IA, Ogneva TS, Bataev AA, Mali VI, Esikov MA, Lazurenko DV, Guo Y, Jorge Junior AM (2015) Explosively welded multilayer Ni-Al composites. Mater Design 88:1082–1087. doi:10.1016/j.matdes.2015.09.103

    Article  Google Scholar 

  37. Paul H, Morgiel J, Baudin T, Brisset F, Prazmowski M, Miszczyk M (2014) Characterization of explosive weld joints by TEM and SEM/EBSD. Arch Metall Mater 59(3):1129–1136. doi:10.2478/amm-2014-0197

    Article  Google Scholar 

  38. Maliutina IN, Mali VI, Bataev IA, Bataev AA, Esikov MA, Smirnov AI, Skorokhod KA (2013, 2013) Structure and microhardness of Cu-Ta joints produced by explosive welding. Sci World J. doi:10.1155/2013/256758

  39. Zareie Rajani HR, Akbari Mousavi SAA (2012) The effect of explosive welding parameters on metallurgical and mechanical interfacial features of Inconel 625/plain carbon steel bimetal plate. Mat Sci Eng-A 556:454–464. doi:10.1016/j.msea.2012.07.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iu. N. Maliutina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mali, V.I., Bataev, A.A., Maliutina, I.N. et al. Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding. Int J Adv Manuf Technol 93, 4285–4294 (2017). https://doi.org/10.1007/s00170-017-0887-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0887-8

Keywords

Navigation