Skip to main content
Log in

Thermal Expansion of Pressure Infiltrated Aluminum/Hollow Cenosphere Particulate Composites

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, analytical analyses on the coefficient of thermal expansions (CTE) of pure aluminum alloy containing hollow cenosphere particles were performed by considering particle wall thickness and porosity on the CTE of the composite. The particle wall thickness effect was expressed in terms of the ratio of particle wall thickness and its radius (t/R). A theoretical prediction of the CTE of hollow and solid cenosphere particles was made by using modified rule of mixtures. The average CTE of solid cenosphere particle (7.2 × 10–6/°C) was much closer to the CTEs of SiC and Al2O3 compared to CTE of hollow cenosphere particle. The effective CTE of porosity, calculated using the ROM, was around three times higher than the CTE of pure aluminum and one order higher than the CTE of ceramic particles. The higher effective CTE of porosity suggests the importance of controlling pore content to reduce the CTE of the composites. The pore volume change during thermal cycle was calculated, and the result showed an increase in pore volume after thermal cycle. The CTE increase was discussed in terms of pore volume increase and residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. A. Kordijazi, S. Behera, D. Patel, P. Rohatgi, and M. Nosonovsky, Langmuir 37(12), 3766. (2021).

  2. P.K. Rohatgi, S. Ray, and Y. Liu, Int. Mater. Rev. 37, 129. (1992).

    Article  Google Scholar 

  3. M.S. Hasan, A. Kordijazi, P.K. Rohatgi, and M. Nosonovsky, Tribol. Int. 165, 107326. (2022).

    Article  Google Scholar 

  4. M. Taya and R.J. Arsenault, Metal Matrix Composites: Thermomechanical Behavior (Elsevier, 2016).

  5. T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, 1995).

  6. A. Kordijazi, D. Weiss, S. Das, S. Behera, H.M. Roshan, and P. Rohatgi, Inter Metalcast 15, 2. (2021).

    Article  Google Scholar 

  7. D.K. Balch, A. Mortensen, S. Suresh, Y.-L. Shen, T.J. Fitzgerald, and V.J. Michaud, Metall Mater Trans A 27, 3700. (1996).

    Article  Google Scholar 

  8. M. Hoffman, S. Skirl, W. Pompe, and J. Rödel, Acta Mater. 47, 565. (1999).

    Article  Google Scholar 

  9. S. Elomari, R. Boukhili, and D.J. Lloyd, Acta Mater. 44, 1873. (1996).

    Article  Google Scholar 

  10. Z.R. Xu, K.K. Chawla, R. Mitra, and M.E. Fine, Scr. Metall. Mater 31, 1525. (1994).

    Article  Google Scholar 

  11. D.L. Ellis, and D.L. McDanels, Metall Mater Trans A 24, 43. (1993).

    Article  Google Scholar 

  12. S. Elomari, M.D. Skibo, A. Sundarrajan, and H. Richards, Compos. Sci. Technol. 58, 369. (1998).

    Article  Google Scholar 

  13. N. Chawla, B.V. Patel, M. Koopman, K.K. Chawla, R. Saha, B.R. Patterson, E.R. Fuller, and S.A. Langer, Mater. Charact. 49, 395. (2002).

    Article  Google Scholar 

  14. R. Arpón, J.M. Molina, R.A. Saravanan, C. García-Cordovilla, E. Louis, and J. Narciso, Acta Mater. 51, 3145. (2003).

    Article  Google Scholar 

  15. S. Elomari, R. Boukhili, C. San Marchi, A. Mortensen, and D.J. Lloyd, J. Mater. Sci. 32, 2131. (1997).

    Article  Google Scholar 

  16. N. Chawla, X. Deng, and D.R.M. Schnell, Mater. Sci. Eng. A 426, 314. (2006).

    Article  Google Scholar 

  17. T.H. Nam, G. Requena, and P. Degischer, Compos. A Appl. Sci. Manuf. 39, 856. (2008).

    Article  Google Scholar 

  18. Y.-L. Shen, Mater. Sci. Eng. A 237, 102. (1997).

    Article  Google Scholar 

  19. W.D. Fei, and L.D. Wang, Mater. Chem. Phys. 85, 450. (2004).

    Article  Google Scholar 

  20. V.C. Shunmugasamy, D. Pinisetty, and N. Gupta, J Mater Sci 47, 5596. (2012).

    Article  Google Scholar 

  21. W.A. Uju, and I.N.A. Oguocha, Mater. Des. 33, 503. (2012).

    Article  Google Scholar 

  22. J. González-Benito, E. Castillo, and J.F. Caldito, Eur. Polymer J. 49, 1747. (2013).

    Article  Google Scholar 

  23. Z. Wei, P. Ma, H. Wang, C. Zou, S. Scudino, K. Song, K.G. Prashanth, W. Jiang, and J. Eckert, Mater. Des. (1980–2015) 65, 387. (2015).

    Article  Google Scholar 

  24. E. Sideridis, and J. Venetis, Comput. Particle Mech. 6, 29. (2019).

    Article  Google Scholar 

  25. J. Kim, A. Kordijazi, and P. Rohatgi, JOM 74, 2071. (2022).

    Article  Google Scholar 

  26. P.K. Rohatgi, J.K. Kim, N. Gupta, S. Alaraj, and A. Daoud, Compos. A Appl. Sci. Manuf. 37, 430. (2006).

    Article  Google Scholar 

  27. J. Meng, T.-W. Liu, H.-Y. Wang, and L.-H. Dai, Compos. B Eng. 207, 108563. (2021).

    Article  Google Scholar 

  28. R. Chandel, N. Sharma, and S.A. Bansal, Emergent Mater. 4(5), 1243. (2021).

  29. I.N. Orbulov, A. Szlancsik, A. Kemény, and D. Kincses, Compos. A Appl. Sci. Manuf. 135, 105923. (2020).

    Article  Google Scholar 

  30. Ç. Bolat, İ. C. Akgün, and A. Göksenli, Eur. Mech. Sci.4, 131 (2020).

  31. S. Das, A. Kordijazi, O. Akbarzadeh, and P. K. Rohatgi, Eng. Rep. e12110 (n.d.).

  32. P.K. Rohatgi, R. Asthana, and S. Das, Int. Met. Rev. 31, 115. (1986).

    Article  Google Scholar 

  33. E.H. Kerner, Proc. Phys. Soc. B 69, 808. (1956).

    Article  Google Scholar 

  34. P.S. Turner, The problem of thermal-expansion stresses in reinfroced plastics (National Bureau of Standards Gaithersburg) (1942).

  35. R.A. Schapery, J. Compos. Mater. 2, 380. (1968).

    Article  Google Scholar 

  36. P.K. Rohatgi, N. Gupta, and S. Alaraj, J. Compos. Mater. 40, 1163. (2006).

    Article  Google Scholar 

  37. R.U. Vaidya, and K.K. Chawla, Compos. Sci. Technol. 50, 13. (1994).

    Article  Google Scholar 

  38. Q. Sun, and O.T. Inal, Mater. Sci. Eng. B 41, 261. (1996).

    Article  Google Scholar 

  39. N. Gupta and P.K. Rohatgi, Metal Matrix Syntactic Foams: Processing, Microstructure, Properties and Applications (DEStech Publications, Inc, 2014).

  40. A. Mortensen, and J.A. Cornie, Metall Mater Trans A 18, 1160. (1987).

    Article  Google Scholar 

  41. S. Long, Z. Zhang, and H.M. Flower, Acta Metall. Mater. 42, 1389. (1994).

    Article  Google Scholar 

  42. K.K. Chawla, Composite Materials: Science and Engineering, 3rd edn. (Springer, New York, 2012).

    Book  Google Scholar 

  43. R.J. Arsenault, and N. Shi, Mater. Sci. Eng. 81, 175. (1986).

    Article  Google Scholar 

  44. D. Dunand, and A. Mortensen, Mater. Sci. Eng. A 135, 179. (1991).

    Article  Google Scholar 

  45. S. Qin, C. Chen, G. Zhang, W. Wang, and Z. Wang, Mater. Sci. Eng. A 272, 363. (1999).

    Article  Google Scholar 

  46. M.A. Wright, Metall Mater Trans A 6, 129. (1975).

    Article  Google Scholar 

  47. S. Yoda, N. Kurihara, K. Wakashima, and S. Umekawa, Metall Mater Trans A 9, 1229. (1978).

    Article  Google Scholar 

  48. J.E. Hack and M.F. Amateau, Metallurgical Society of AIME (Warrendale, PA, 1983).

  49. K. Kawata, S. Umekawa, and A. Kobayashi, Proceedings of the third Japan-US conference on composite materials (Science University of Tokyo, Japan, 1986).

  50. S. Yoda, R. Takahashi, K. Wakashima, and S. Umekawa, Metall Mater Trans A 10, 1796. (1979).

    Article  Google Scholar 

  51. Y.-L. Shen, Mater. Sci. Eng. A 252, 269. (1998).

    Article  Google Scholar 

  52. S.-Y. Chang, S.-J. Lin, and M.C. Flemings, Metall Mater Trans A 31, 291. (2000).

    Article  Google Scholar 

  53. K.-M. Shu, and G.C. Tu, Mater. Sci. Eng. A 349, 236. (2003).

    Article  Google Scholar 

  54. N.M.S. Kumar, T.N. Shashank, N.U. Dheeraj, A. Kordijazi, P.K. Rohatgi, and M. Sadashiva, Int. Metalcast. 1. (2022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Kordijazi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kordijazi, A. & Rohatgi, P. Thermal Expansion of Pressure Infiltrated Aluminum/Hollow Cenosphere Particulate Composites. JOM 75, 209–217 (2023). https://doi.org/10.1007/s11837-022-05553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05553-0

Navigation