Skip to main content
Log in

Microwave Sintering of Mullite-Nd2O3 Composites: Investigation of Microstructure and Mechanical Properties

  • Refractory Materials for Corrosive or High Temperature Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We investigated the effect of microwave sintering temperature on the densification, microstructure, and mechanical properties of mullite-Nd2O3 composites. The calcined mullite precursors prepared from aluminum nitrate nonahydrate and tetraethyl orthosilicate with and without 10 wt.% Nd2O3 were sintered with microwave fast heating processes at temperatures of 1400, 1500 and 1600°C without a holding time. The XRD results revealed cristobalite, alumina, and mullite as the dominant crystalline phases in the sintered samples without Nd2O3, and the quantity of mullite increased with increasing sintering temperature. The addition of Nd2O3 led to the elimination of cristobalite peaks with increasing the temperature from 1400 to 1500°C. The composites showed higher relative density compared with mullite ceramic, probably due to increased absorption of microwave energy by Nd2O3. The highest Vickers hardness (13.9 ± 0.2 GPa), bending strength (387 ± 22 MPa), and fracture toughness (4.81 ± 0.1 MPa.m0.5) were found in the mullite composite sintered at 1600°C. The good mechanical properties of mullite-Nd2O3 composite seem to be due to the formation of worm-shaped fibers in the Al2O3-SiO2-Nd2O3 ternary system in the microstructure of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.L. Bella, M. Hamidouche, and L. Gremillard, Ceram. Int. 47, 16208. (2021).

    Article  Google Scholar 

  2. J. Wu, C. Ding, X. Xu, and L. Chen, Ceram. Int. 47, 10672. (2021).

    Article  Google Scholar 

  3. A.V. Weinberg, D. Goeuriot, J. Poirier, C. Varona, and X. Chaucherie, J. Eur. Ceram. Soc. 41, 995. (2021).

    Article  Google Scholar 

  4. L.S.Z. Hui, J. Jianping, L.I. Jing, L.I. You, Z. Liang, and G. Hui, J. For. Eng. 5, 76. (2020).

    Google Scholar 

  5. E. Ghasali, E.K. Saeidabadi, M. Alizadeh, A. Fazili, H. Rajaei, A. Jam, H. Kazemzadeh, and T. Ebadzadeh, Ceram. Int. 44, 18743. (2018).

    Article  Google Scholar 

  6. S.M.R. Derakhshandeh, M.S. Gohari, E.K. Saeidabadi, A. Jam, H. Rajaei, A. Fazili, M. Alizadeh, E. Ghasali, A. Pakseresht, and T. Ebadzadeh, Ceram. Int. 44, 13176. (2018).

    Article  Google Scholar 

  7. H. Schneider, J. Schreuer, and B. Hildmann, J. Eur. Ceram. Soc. 28, 329. (2008).

    Article  Google Scholar 

  8. Z.S.X. Haian, A.N. Jiahuan, Z. Weizi, and G. Chaoqi, J. For. Eng. 5, 88. (2020).

    Google Scholar 

  9. P.S. Behera and S. Bhattacharyya, Mater. Today Commun. 26, 101818. (2021).

    Article  Google Scholar 

  10. S.V. Krishnan, M.M. Ambalam, R. Venkatesan, J. Mayandi, and V. Venkatachalapathy, Ceram. Int. 47(17), 23693. (2021).

    Article  Google Scholar 

  11. M. Pomeroy, ed., in Encyclopedia of Materials: Technical Ceramics and Glasses (Elsevier, 2021).

    Google Scholar 

  12. C. Sadik, I.E. El Amrani, and A. Albizane, J. Asian Ceram. Soc. 2, 83. (2014).

    Article  Google Scholar 

  13. S. Ilić, S. Zec, M. Miljković, D. Poleti, M. Pošarac-Marković, D. Janaćković, and B. Matović, J. Alloys Compd. 612, 259. (2014).

    Article  Google Scholar 

  14. H. Ito, Met. Powder Rep. 51, 35. (1997).

    Article  Google Scholar 

  15. N. Ecebaş, G.M. Dursun, A.H. Yeşilova, and C. Duran, Int. J. Appl. Ceram. Technol. 17, 264. (2020).

    Article  Google Scholar 

  16. K. Cui, Y. Zhang, T. Fu, J. Wang, and X. Zhang, Coatings 10, 672. (2020).

    Article  Google Scholar 

  17. H. Schneider and K. Okada, Mullite (Wiley, Weinheim, FRG, 2006), pp 397–476.

    Book  Google Scholar 

  18. K. Okada and N. Ōtuska, J. Am. Ceram. Soc. 74, 2414. (1991).

    Article  Google Scholar 

  19. S. Hashimoto and A. Yamaguchi, J. Eur. Ceram. Soc. 20, 397. (2000).

    Article  Google Scholar 

  20. F.S. Song, Adv. Mater. Res. 233–235, 2640. (2011).

    Article  Google Scholar 

  21. F.R. Barrientos-Hernández, M. Pérez-Labra, A. Lobo-Guerrero, M. Reyes-Pérez, J.C. Juárez-Tapia, J. Hernández-Ávila, E. Cardoso-Legorreta, and J.P. Hernández-Lara, Adv. Mater. Sci. Eng. 2021. (2021). https://doi.org/10.1155/2021/6678297.

    Article  Google Scholar 

  22. R. Sarkar and M. Mallick, Bull. Mater. Sci. 41, 1. (2018).

    Article  Google Scholar 

  23. M. Schmücker, H. Schneider, T. Mauer, and B. Clauß, J. Am. Ceram. Soc. 88, 488. (2005).

    Article  Google Scholar 

  24. J. Wu, C. Ding, X. Xu, S. Zhou, Y. Zhou, and Q. Zhang, Ceram. Int. 47, 17177. (2021).

    Article  Google Scholar 

  25. J. Kuang, L. Li, P. Liu, W. Yuan, J. Hu, and T. Qiu, J. Rare Earths 35, 831. (2017).

    Article  Google Scholar 

  26. Y. Xu, X. Hu, F. Xu, and K. Li, Ceram. Int. 43, 5847. (2017).

    Article  Google Scholar 

  27. S. Islam, N. Bidin, S. Riaz, S. Naseem, and M.M. Sanagi, J. Taiwan Inst. Chem. Eng. 70, 366. (2017).

    Article  Google Scholar 

  28. J.B. Davis, D.B. Marshall, R.M. Housley, and P.E.D. Morgan, J. Am. Ceram. Soc. 81, 2169. (2005).

    Article  Google Scholar 

  29. H. Jin, Z. Shi, X. Li, Y. Li, H. Xia, Z. Xu, and G. Qiao, Ceram. Int. 43, 3356. (2017).

    Article  Google Scholar 

  30. H.S. Kim and P.S. Nicholson, J. Am. Ceram. Soc. 85, 1730. (2004).

    Article  Google Scholar 

  31. C. Singhal and Q. Murtaza, Mater. Today Proc. 5, 24287. (2018).

    Article  Google Scholar 

  32. A. Kumar and P.M. Pandey, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 095440622095123 (2020)

  33. S. Marinel, C. Manière, A. Bilot, C. Bilot, C. Harnois, G. Riquet, F. Valdivieso, C. Meunier, C. Coureau, and F. Barthélemy, Materials (Basel). 12, 2544. (2019).

    Article  Google Scholar 

  34. M.E. Brodwin and D.L. Johnson, IEEEMTT-S Int. Microw. Symp. Dig. 1988, 287. (1988).

    Google Scholar 

  35. S.A.A. Alem, R. Latifi, S. Angizi, F. Hassanaghaei, M. Aghaahmadi, E. Ghasali, and M. Rajabi, Mater. Manuf. Process. 35, 303. (2020).

    Article  Google Scholar 

  36. P.H. Huang Cong, Z. Yongjian, and F. Junfeng, J. For. Eng. 5, 90. (2020).

    Google Scholar 

  37. E. Ghasali, H. Nouranian, A. Rahbari, H. Majidian, M. Alizadeh, and T. Ebadzadeh, Mater. Res. 19, 1189. (2016).

    Article  Google Scholar 

  38. D. Agrawal, Trans. Indian Ceram. Soc. 65, 129. (2006).

    Article  Google Scholar 

  39. M. Panneerselvam and K.J. Rao, Chem. Mater. 15, 2247. (2003).

    Article  Google Scholar 

  40. X. Dang, M. Wei, R. Zhang, K. Guan, B. Fan, W. Long, J. Ma, and H. Zhang, Process. Appl. Ceram. 11, 106. (2017).

    Article  Google Scholar 

  41. B. Fan, R. Zhang, B. Sun, X. Li, and C. Li, J. Wuhan Univ. Technol. Sci. Ed. 27, 1125. (2012).

    Article  Google Scholar 

  42. L.C.R. Navarro, R.R. Menezes, and R.H.G.A. Kiminami, Mater. Res. 17, 1575. (2014).

    Article  Google Scholar 

  43. P.M. Souto, R.R. Menezes, and R.H.G.A. Kiminami, Ceram. Int. 37, 241. (2011).

    Article  Google Scholar 

  44. E. Ghasali, A. Shahmorad, Y. Orooji, A. Faraji, K. Asadian, M. Alizadeh, and T. Ebadzadeh, Ceram. Int. 47, 14270. (2021).

    Article  Google Scholar 

  45. E. Ghasali, Y. Orooji, A. Azarniya, M. Alizadeh, M. Kazem-zad, and T. Ebadzadeh, Appl. Surf. Sci. 542, 148538. (2021).

    Article  Google Scholar 

  46. K. Niihara, R. Morena, and D.P.H. Hasselman, J. Mater. Sci. Lett. 1, 13. (1982).

    Article  Google Scholar 

  47. E. Ghasali, Y. Orooji, A. Faeghi-nia, M. Alizadeh, and T. Ebadzadeh, Ceram. Int. 47, 16200. (2021).

    Article  Google Scholar 

  48. L. Li, Z. Tang, W. Sun, and P. Wang, J. Shanghai Univ. English Ed. 4, 72. (2000).

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Ghasali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasali, E., Kariminejad, A., Ghahremani, D. et al. Microwave Sintering of Mullite-Nd2O3 Composites: Investigation of Microstructure and Mechanical Properties. JOM 74, 4335–4343 (2022). https://doi.org/10.1007/s11837-022-05468-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05468-w

Navigation