Skip to main content
Log in

Formation and densification of mullite through solid-oxide reaction technique using commercial-grade raw materials

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Two different commercially available sources of alumina and silica were used to study the formation and densification behaviour of mullite prepared by solid-oxide reaction technique in a single firing. Phase analysis and densification studies were carried out on the samples sintered between 1200 and \(1600^{{\circ }}\hbox {C}\). Effect of addition of 1–6 wt% MgO on the sintered mullite ceramics was also studied. MgO was found to improve the density values for all the compositions till 4 wt% and with higher addition it deteriorated, mainly due to higher extent of liquid phase formation. Mullite formation was found to start below \(1200^{{\circ }}\hbox {C}\) and constituent oxides were found even at \(1600^{{\circ }}\hbox {C}\); however, addition of 4 wt% MgO was found to complete the mullite formation at \(1600^{{\circ }}\hbox {C}\) for all the compositions. Microstructural studies showed grain growth in the compositions containing MgO and higher impurities due to formation of greater extent of liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Torrecillias R, De Aza S, Moya J S, Epicier T and Fantozzi G 1990 J. Mater. Sci. Lett. 9 1400

    Article  Google Scholar 

  2. Skoog A J and Moore R E 1998 Am. Ceram. Soc. Bull. 67 1180

    Google Scholar 

  3. Aksay I A, Dabbs D M and Sarlkaya M 1991 J. Am. Ceram. Soc. 74 2343

    Article  Google Scholar 

  4. Hildmann B and Schneider H 2005 J. Am. Ceram. Soc. 88 2879

    Article  Google Scholar 

  5. Zhang Y, Ding Y, Gao J and Yang J 2009 J. Eur. Ceram. Soc. 29 1101

    Article  Google Scholar 

  6. Dabbs D M, Yao N and Aksay I A 1999 J. Nanopart. Res. 1 127

    Article  Google Scholar 

  7. Yoshida K, Hyuga H, Kondo N and Kita H 2010 Mater. Sci. Eng. B 173 66

    Article  Google Scholar 

  8. Aksay I A, Dabbs D M and Sarikaya M 1991 J. Am. Ceram. Soc. 74 2343

    Article  Google Scholar 

  9. Nurishi Y and Pask J A 1982 Ceram. Int. 8 57

    Article  Google Scholar 

  10. Saruhan B, Albers W, Schneider H and Kaysser W A 1996 J. Eur. Ceram. Soc. 16 1075

    Article  Google Scholar 

  11. Rana A P S, Aiko O and Pask J A 1982 Ceram. Int. 8 151

    Article  Google Scholar 

  12. Rodrigo P D D and Boch P 1985 Int. J. High Technol. Ceram. 1 3

    Article  Google Scholar 

  13. Boch P, Chartier T and Rodrigo P D D 1990 In: S Somiya, R F Davis and J A Pask (eds) Mullite and mullite matrix composites Ceramic Transactions vol 6 (Westerville, OH: American Ceramic Society) p 353

  14. Tripathi H S and Banerjee G 1998 J. Eur. Ceram. Soc. 18 2081

    Article  Google Scholar 

  15. Viswabaskaran V, Gnanam F D and Balasubramanian M 2003 J. Mater. Process. Technol. 142 275

    Article  Google Scholar 

  16. Tripathi H S, Das S K, Mukherjee B, Ghosh A and Banerjee G 2001 Ceram. Int. 27 833

    Article  Google Scholar 

  17. Tripathi H S, Das S K and Banerjee G 2000 Ceram. Int. 26 1

    Article  Google Scholar 

  18. Lee W E and Rainforth W M 1994 Ceramic microstructures: property control by processing (London: Chapman & Hall) p 299

  19. Viswabaskaran V, Gnanam F D and Balasubramanian M 2003 J. Mater. Sci. Lett. 22 663

    Article  Google Scholar 

  20. Viswabaskaran V, Gnanam F D and Balasubramanian M 2004 Appl. Clay Sci. 25 29

    Article  Google Scholar 

  21. Montanaro L, Esnouf C, Perrot C, Thollet G, Fantozzi G and Negro A 2000 J. Am. Ceram. Soc. 83 189

    Article  Google Scholar 

  22. Montanaro L, Tulliani J M, Perrot C and Negro A 1997 J. Eur. Ceram. Soc. 17 1715

    Article  Google Scholar 

  23. Ismail M G M U, Tsunatori H and Nakai S 1990 J. Mater. Sci. 25 2619

    Article  Google Scholar 

  24. Sivakumar R, Jayaseelan D D, Nishikawa T, Honda S and Awaji H 2001 Ceram. Int. 27 537

    Article  Google Scholar 

  25. Soutoa P M, Menezesb R R and Kiminami R H G A 2009 J. Mater. Process. Technol. 209 548

    Article  Google Scholar 

  26. Wrust J C and Nelson J A 1972 J. Am. Ceram. Soc. 55 109

    Article  Google Scholar 

  27. Heraiz M, Merrouche A and Saheb N 2006 Adv. Appl. Ceram.: Struct. Funct. Bioceram. 105 285

Download references

Acknowledgements

We thankfully acknowledge the support of Mr S Mukherjee and Mr S Chaterjee of Almatis, India, for the raw materials and the staff of Department of Ceramic Engineering, NIT, Rourkela, for different experiments during the work, especially for the phase analysis and microstructural study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritwik Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, R., Mallick, M. Formation and densification of mullite through solid-oxide reaction technique using commercial-grade raw materials. Bull Mater Sci 41, 31 (2018). https://doi.org/10.1007/s12034-017-1533-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-017-1533-7

Keywords

Navigation