Skip to main content
Log in

Effects of Different Pressing Process on the Microstructure and Thermoelectric Properties of TiNiSn1-xTex Half-Heusler Alloy Prepared by Microwave Method

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, effects of different pressing processes on the microstructure and thermoelectric properties of TiNiSn1-xTex Half-Heusler alloy prepared by microwave method were investigated. TiNiSn1-xTex Half-Heusler alloys prepared by microwave synthesis-warm pressing-microwave sintering process had relatively higher density than those of samples prepared by microwave synthesis-cold pressing-microwave sintering (MCM) process. The XRD results showed that the diffraction peaks of TiNiSn1-xTex samples slightly shifted to the large angle direction because of the Te substitution on the Sn sites, and the intensity of impurity peak decreased after microwave sintering. Although the density of TiNiSn1-xTex samples prepared by MCM process was lower, the thermoelectric performance of TiNiSn0.99Te0.01 sample was significantly improved, which resulted from the decrease of resistivity and thermal conductivity due to the Te-doping. The thermal conductivity of TiNiSn0.99Te0.01 was within 1.21–1.61 \({\text{W}}{\text{m}}^{-1}{\text{K}}^{-1}\) over the whole temperature range, and its thermoelectric figure of merit ZT was the best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat Mater. 7, 105. (2008).

    Article  Google Scholar 

  2. Y. Lei, Y. Li, L. Xu, J. Yang, R. Wan, and H. Long, J. Alloys Compd. 660, 166. (2016).

    Article  Google Scholar 

  3. H. Goldsmid, Thermoelectric refrigeration (Springer, Boston, 2013), p 10.

    Google Scholar 

  4. P. Maji, N.J. Takas, D.K. Misra, H. Gabrisch, K. Stokes, and P.F. Poudeu, J. Solid State Chem. 183, 1120. (2010).

    Article  Google Scholar 

  5. S. Chen and Z. Ren, Mater. Today. 16, 387. (2013).

    Article  Google Scholar 

  6. S.B. Riffat and X. Ma, Appl. Therm. Eng. 23, 913. (2003).

    Article  Google Scholar 

  7. C. Uher, J. Yang, S. Hu, D. Morelli, and G. Meisner, Phys. Rev. B. 59, 8615. (1999).

    Article  Google Scholar 

  8. J. He and T.M. Tritt, Science. 357, eaak9997. (2017).

    Article  Google Scholar 

  9. Y. Sun, W. Qiu, L. Zhao, H. He, L. Yang, L. Chen, H. Deng, X. Shi, and J. Tang, Chem. Phys. Lett. 755, 137770. (2020).

    Article  Google Scholar 

  10. R.A. Downie, D.A. MacLaren, R.I. Smith, and J.W. Bos, Chem Commun (Camb). 49, 4184. (2013).

    Article  Google Scholar 

  11. E. Lkhagvasuren, S. Ouardi, G.H. Fecher, G. Auffermann, G. Kreiner, W. Schnelle, and C. Felser, AIP Adv. 7, 045010. (2017).

    Article  Google Scholar 

  12. H. Ma, C.L. Yang, M.S. Wang, X.G. Ma, and Y.G. Yi, J. Phys. D: Appl. Phys. 52, 255501. (2019).

    Article  Google Scholar 

  13. F. Aliev, N. Brandt, V. Moshchalkov, V. Kozyrkov, R. Skolozdra, and A. Belogorokhov, Z. Physik B Condens. Matter. 75, 167. (1989).

    Article  Google Scholar 

  14. F. Aliev, V. Kozyrkov, V. Moshchalkov, R. Scolozdra, and K. Durczewski, Z. Physik B Condens. Matter. 80, 353. (1990).

    Article  Google Scholar 

  15. K. Kurosaki, T. Maekawa, H. Muta, and S. Yamanaka, J. Alloys Compd. 397, 296. (2005).

    Article  Google Scholar 

  16. T. Berry, C. Fu, G. Auffermann, G.H. Fecher, W. Schnelle, F. Serrano-Sanchez, Y. Yue, H. Liang, and C. Felser, Chem. Mater. 29, 7042. (2017).

    Article  Google Scholar 

  17. R. Downie, D. MacLaren, and J.W. Bos, J. Mater. Chem. A. 2, 6107. (2014).

    Article  Google Scholar 

  18. A. Karati, M. Nagini, S. Ghosh, R. Shabadi, K. Pradeep, R.C. Mallik, B. Murty, and U. Varadaraju, Sci. Rep. 9, 1. (2019).

    Article  Google Scholar 

  19. S.W. Kim, Y. Kimura, and Y. Mishima, Intermetallics 15, 349. (2007).

    Article  Google Scholar 

  20. J.P. Makongo, D.K. Misra, X. Zhou, A. Pant, M.R. Shabetai, X. Su, C. Uher, K.L. Stokes, and P.F. Poudeu, J. Am. Chem. Soc. 133, 18843. (2011).

    Article  Google Scholar 

  21. Y. Gelbstein, N. Tal, A. Yarmek, Y. Rosenberg, M.P. Dariel, S. Ouardi, B. Balke, C. Felser, and M. Köhne, J. Mater. Res. 26, 1919. (2011).

    Article  Google Scholar 

  22. B. Balke, J. Barth, M. Schwall, G.H. Fecher, and C. Felser, J. Electron. Mater. 40, 702. (2011).

    Article  Google Scholar 

  23. H. Xie, H. Wang, C. Fu, Y. Liu, G.J. Snyder, X. Zhao, and T. Zhu, Sci. Rep. 4, 1. (2014).

    Google Scholar 

  24. A. Karati, S. Mukherjee, R.C. Mallik, R. Shabadi, B. Murty, and U. Varadaraju, Materialia. 7, 100410. (2019).

    Article  Google Scholar 

  25. A. Karati and B. Murty, Mater. Lett. 205, 114. (2017).

    Article  Google Scholar 

  26. D. Baghurst, A. Chippindale, and D.M.P. Mingos, Nature 332, 311. (1988).

    Article  Google Scholar 

  27. W.L.E. Wong, S. Karthik, and M. Gupta, Mater. Sci. Technol. 21, 1063. (2005).

    Article  Google Scholar 

  28. J.W. Lekse, T.J. Stagger, and J.A. Aitken, Chem. Mater. 19, 3601. (2007).

    Article  Google Scholar 

  29. K. Biswas, S. Muir, and M.A. Subramanian, Mater. Res. Bull. 46, 2288. (2011).

    Article  Google Scholar 

  30. C.S. Birkel, W.G. Zeier, J.E. Douglas, B.R. Lettiere, C.E. Mills, G. Seward, A. Birkel, M.L. Snedaker, Y. Zhang, and G.J. Snyder, Chem. Mater. 24, 2558. (2012).

    Article  Google Scholar 

  31. J.E. Douglas, C.S. Birkel, M.S. Miao, C.J. Torbet, G.D. Stucky, T.M. Pollock, and R. Seshadri, Appl. Phys. Lett. 101, 183902. (2012).

    Article  Google Scholar 

  32. K. Chen, C. Nuttall, E. Stefanaki, K. Placha, R. Tuley, K. Simpson, J.W.G. Bos, and M.J. Reece, Scr. Mater. 191, 71. (2021).

    Article  Google Scholar 

  33. Y. Lei, C. Cheng, Y. Li, R. Wan, and M. Wang, Ceram. Int. 43, 9343. (2017).

    Article  Google Scholar 

  34. Z. Dong, J. Luo, C. Wang, Y. Jiang, S. Tan, Y. Zhang, Y. Grin, Z. Yu, K. Guo, and J. Zhang, Nat. Commun. 13, 1. (2022).

    Google Scholar 

  35. F. Aversano, M. Palumbo, A. Ferrario, S. Boldrini, C. Fanciulli, M. Baricco, and A. Castellero, Intermetallics 127, 106988. (2020).

    Article  Google Scholar 

  36. X. Yang, D. Liu, J. Li, R. Min, H. Kang, L. Li, Z. Chen, E. Guo, and T. Wang, J. Mater. Sci. Technol. 87, 39. (2021).

    Article  Google Scholar 

  37. D.Y. Jung, K. Kurosaki, C.E. Kim, H. Muta, and S. Yamanaka, J. Alloys Compd. 489, 328. (2010).

    Article  Google Scholar 

  38. J.N. Kahiu, S.K. Kihoi, and H.S. Lee, J. Mater. Chem. C. 9, 12374. (2021).

    Article  Google Scholar 

  39. K. Gałązka, W. Xie, S. Populoh, M.H. Aguirre, S. Yoon, G. Büttner, and A. Weidenkaff, Rare Met. 39, 659. (2020).

    Article  Google Scholar 

  40. J.L. Chen, H. Yang, C. Liu, J. Liang, L. Miao, Z. Zhang, P. Liu, K. Yoshida, C. Chen, Q. Zhang, and A.C.S. Appl, Mater. Interfaces. 13, 48801. (2021).

    Article  Google Scholar 

  41. N. Jia, J. Cao, X.Y. Tan, J. Dong, H. Liu, C.K.I. Tan, J. Xu, Q. Yan, X.J. Loh, and A. Suwardi, Mater. Today Phys. 21, 100519. (2021).

    Article  Google Scholar 

  42. R.F. Wang, S. Li, W.H. Xue, C. Chen, Y.M. Wang, X.J. Liu, and Q. Zhang, Rare Met. 40, 40. (2021).

    Article  Google Scholar 

  43. J.M. Mena and T. Gruhn, J. Mater. Chem. A. 9, 21111. (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51772132); Shandong Province Higher Educational Youth Innovative Science and Technology Program (Grant No. 2019KJA018); the leader of scientific research studio program of Jinan (Grant No. 2021GXRC082); and Natural Science Foundation of Shandong Province (Grant No. ZR2019MEM019). The authors would like to thank Yanzhong Pei Group at Tongji University for the partial measurement of TE properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Degang Zhao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, R., Bo, L. et al. Effects of Different Pressing Process on the Microstructure and Thermoelectric Properties of TiNiSn1-xTex Half-Heusler Alloy Prepared by Microwave Method. JOM 74, 4250–4257 (2022). https://doi.org/10.1007/s11837-022-05464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05464-0

Navigation