Skip to main content
Log in

Understanding the Fabrication of Ultrafine Grains Through Severe Plastic Deformation Techniques: An Overview

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

With the advent of demands for better mechanical properties for industrialization, it has become necessary to venture into new processing routes like severe plastic deformation (SPD) techniques. Researchers are putting effort into amalgamating these methods with thermomechanical treatments to further improve the mechanical properties. Prior to that, it is crucial to study the fundamentals related to the SPD methodologies, such as microstructural aspects and effects of variations of grain sizes, flow stresses and strain rates, thereby helping to estimate the Hall-Petch slopes for various materials. Furthermore, the focus should be given to the studies related to the special inverse Hall-Petch behaviors seen in the magnesium alloys. The models developed have shown good compliance with the experimental data for pure metals, including aluminum, copper, magnesium, titanium and zinc, conducted at different temperatures and strain rate values. The model could successfully predict the final grain sizes achievable by these SPD techniques, thereby providing a broad overview of the mechanical properties after a vivid understanding of these techniques. SPD processes assist in achieving an excellent combination of high strength along with a minimum reduction in values of ductility due to the formation of ultrafine grains in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y. Zhu, Jom 68, 1216 (2016).

    Article  Google Scholar 

  2. T.C. Lowe, and R.Z. Valiev, Jom 56, 64 (2004).

    Article  Google Scholar 

  3. R. Valiev, Nat. Mater. 3, 511 (2004).

    Article  Google Scholar 

  4. R.Z. Valiev, R.R. Mulyukov, and V.V. Ovchinnikov, Philos. Mag. Lett. 62, 253 (1990).

    Article  Google Scholar 

  5. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci. 45(2), 103–189 (2000).

    Article  Google Scholar 

  6. A. Ghosh, and M. Ghosh, Mater. Today Proc. 33, 5239 (2020).

    Article  Google Scholar 

  7. Y. Wang, H. Shi, P. Zhou, Y. Tang, J. Liu, L. Wang, J. Li, Y. Fu, and W. Lu, J. Mater. Res. Technol. 15, 6442 (2021).

    Article  Google Scholar 

  8. V.M. Segal, Mater. Sci. Eng. A 197, 157 (1995).

    Article  Google Scholar 

  9. S.-H. Lee, T. Sakai, Y. Saito, H. Utsunomiya, and N. Tsuji, Mater. Trans. JIM 40, 1422 (1999).

    Article  Google Scholar 

  10. J.W. Lee, and J.J. Park, J. Mater. Process. Technol. 130–131, 208 (2002).

    Article  Google Scholar 

  11. D. Geist, C. Rentenberger, and H.P. Karnthaler, Acta Mater. 59, 4578 (2011).

    Article  Google Scholar 

  12. A. K. Ghosh and W. Huang, in edited by T. C. Lowe and R. Z. Valiev (Springer Netherlands, Dordrecht, 2000), pp. 29–36

  13. Y.T. Zhu, H. Jiang, J. Huang, and T.C. Lowe, Metall. Mater. Trans. A 32, 1559 (2001).

    Article  Google Scholar 

  14. H. Conrad, Mater. Sci. Eng. A 341, 216 (2003).

    Article  Google Scholar 

  15. N. Krasilnikov, W. Lojkowski, Z. Pakiela, and R. Valiev, Mater. Sci. Eng. A 397, 330 (2005).

    Article  Google Scholar 

  16. H. Somekawa, and T. Mukai, Metall. Mater. Trans. A 46, 894 (2015).

    Article  Google Scholar 

  17. F.A. Mohamed, and S.S. Dheda, Mater. Sci. Eng. A 558, 59 (2012).

    Article  Google Scholar 

  18. F.A. Mohamed, and S.S. Dheda, Mater. Sci. Eng. A 580, 227 (2013).

    Article  Google Scholar 

  19. K. Edalati, and Z. Horita, Acta Mater. 59, 6831 (2011).

    Article  Google Scholar 

  20. Y. Iwahashi, Z. Horita, M. Nemoto, J. Wang, and T.G. Langdon, Scr. Mater. 35, 143 (1996).

    Article  Google Scholar 

  21. V.M. Segal, Mater. Sci. Eng. A 345, 36 (2003).

    Article  Google Scholar 

  22. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, Mater. Sci. Eng. A 257, 328 (1998).

    Article  Google Scholar 

  23. S.C. Yoon, H.G. Jeong, S. Lee, and H.S. Kim, Comput. Mater. Sci. 77, 202 (2013).

    Article  Google Scholar 

  24. W. Skrotzki, N. Scheerbaum, C.G. Oertel, R. Arruffat-Massion, S. Suwas, and L.S. Tóth, Acta Mater. 55, 2013 (2007).

    Article  Google Scholar 

  25. T. Guo, S. Wei, C. Wang, Q. Li, and Z. Jia, Mater. Sci. Eng. A 759, 97 (2019).

    Article  Google Scholar 

  26. O.F. Higuera-Cobos, J.A. Berríos-Ortiz, and J.M. Cabrera, Mater. Sci. Eng. A 609, 273 (2014).

    Article  Google Scholar 

  27. A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, and T.G. Langdon, Acta Mater. 51, 753 (2003).

    Article  Google Scholar 

  28. G. Sakai, K. Nakamura, Z. Horita, and T.G. Langdon, Mater. Sci. Eng. A 406, 268 (2005).

    Article  Google Scholar 

  29. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Acta Mater. 47, 579 (1999).

    Article  Google Scholar 

  30. S. Roy, S.D. Satyaveer, S. Satyam Suwas, and K.C. Kumar, Mater. Sci. Eng. A 528(29–30), 8469–8478 (2011).

    Article  Google Scholar 

  31. P. Hidalgo-Manrique, C.M. Cepeda-Jiménez, O.A. Ruano, and F. Carreño, Mater. Sci. Eng. A 556, 287 (2012).

    Article  Google Scholar 

  32. A. Goloborodko, O. Sitdikov, H. Miura, and T. Sakai, in Mater. Sci. Forum (Trans Tech Publ, 2006), pp. 79–84

  33. S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S.Y. Mironov, and S.L. Semiatin, Scr. Mater. 51, 1147 (2004).

    Article  Google Scholar 

  34. B. Dong, X. Che, Z. Zhang, J. Yu, and M. Meng, J. Alloys Compd. 853, 157066 (2021).

    Article  Google Scholar 

  35. J. Richert, Aliminum 62, 604 (1986).

    Google Scholar 

  36. M. Richert, H.P. Stüwe, M.J. Zehetbauer, J. Richert, R. Pippan, C. Motz, and E. Schafler, Mater. Sci. Eng. A 355, 180 (2003).

    Article  Google Scholar 

  37. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Acta Mater. 49, 1497 (2001).

    Article  Google Scholar 

  38. D.H. Shin, J.-J. Park, Y.-S. Kim, and K.-T. Park, Mater. Sci. Eng. A 328, 98 (2002).

    Article  Google Scholar 

  39. Y. Beygelzimer, D. Orlov, and V. Varyukhin, in Ultrafine Grained Mater. II, 2002, (2002), pp. 297–304.

  40. M.I. Latypov, I.V. Alexandrov, Y.E. Beygelzimer, S. Lee, and H.S. Kim, Comput. Mater. Sci. 60, 194 (2012).

    Article  Google Scholar 

  41. D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, and Z. Horita, Mater. Sci. Eng. A 519, 105 (2009).

    Article  Google Scholar 

  42. Y. Beygelzimer, D. Prilepo, R. Kulagin, V. Grishaev, O. Abramova, V. Varyukhin, and M. Kulakov, J. Mater. Process. Technol. 211, 522 (2011).

    Article  Google Scholar 

  43. M.S. Węglowski, Arch. Civ. Mech. Eng. 18, 114 (2018).

    Article  Google Scholar 

  44. D.C. Hofmann, and K.S. Vecchio, Mater. Sci. Eng. A 402, 234 (2005).

    Article  Google Scholar 

  45. M.S. Khorrami, N. Saito, Y. Miyashita, and M. Kondo, Mater. Sci. Eng. A 744, 349 (2019).

    Article  Google Scholar 

  46. W. Woo, Z. Feng, B. Clausen, and S.A. David, Mater. Lett. 196, 284 (2017).

    Article  Google Scholar 

  47. J. Peng, Z. Zhang, Z. Liu, Y. Li, P. Guo, W. Zhou, and Y. Wu, Sci. Rep. 8, 1 (2018).

    Google Scholar 

  48. H. Mazaheri, H.J. Aval, and R. Jamaati, Mater. Sci. Eng. A 826, 141958 (2021).

    Article  Google Scholar 

  49. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  50. A.V. Sergueeva, C. Song, R.Z. Valiev, and A.K. Mukherjee, Mater. Sci. Eng. A 339, 159 (2003).

    Article  Google Scholar 

  51. E. Schafler, G. Steiner, E. Korznikova, M. Kerber, and M.J. Zehetbauer, Mater. Sci. Eng. A 410, 169 (2005).

    Article  Google Scholar 

  52. S. V Dobatkin, V. V Zakharov, and L. L. Rokhlin, in Mater. Sci. Forum (Trans Tech Publ, 2006), pp. 399–406

  53. R.Y. Lapovok, J. Mater. Sci. 40, 341 (2005).

    Article  Google Scholar 

  54. M. Müller, M. Zehetbauer, A. Borbély, and T. Ungár, Scr. Mater. 35, 1461 (1996).

    Article  Google Scholar 

  55. Y. Estrin, L. S. Tóth, Y. Bréchet, and H. S. Kim, in Mater. Sci. Forum (Trans Tech Publ, 2006), pp. 675–680

  56. M. Zehetbauer, T. Ungár, R. Kral, A. Borbely, E. Schafler, B. Ortner, H. Amenitsch, and S. Bernstorff, Acta Mater. 47, 1053 (1999).

    Article  Google Scholar 

  57. X.Z. Liao, A.R. Kilmametov, R.Z. Valiev, H. Gao, X. Li, A.K. Mukherjee, J.F. Bingert, and Y.T. Zhu, Appl. Phys. Lett. 88, 21909 (2006).

    Article  Google Scholar 

  58. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, J. Mater. Res. 17, 5 (2002).

    Article  Google Scholar 

  59. N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon, Adv. Mater. 18, 34 (2006).

    Article  Google Scholar 

  60. Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, and E.J. Lavernia, J. Appl. Phys. 98, 34319 (2005).

    Article  Google Scholar 

  61. A.A. Popov, I.Y. Pyshmintsev, S.L. Demakov, A.G. Illarionov, T.C. Lowe, A.V. Sergeyeva, and R.Z. Valiev, Scr. Mater. 37, 1089 (1997).

    Article  Google Scholar 

  62. C. Xu, T.G. Langdon, Z. Horita, and M. Furukawa, J. Mater. Eng. Perform. 13, 683 (2004).

    Article  Google Scholar 

  63. B. Straumal, A. Korneva, and P. Zieęba, Arch. Civ. Mech. Eng. 14, 242 (2014).

    Article  Google Scholar 

  64. H. Ferkel, M. Glatzer, Y. Estrin, R.Z. Valiev, C. Blawert, and B.L. Mordike, Mater. Sci. Eng. A 348, 100 (2003).

    Article  Google Scholar 

  65. V.M. Skripnyuk, E. Rabkin, Y. Estrin, and R. Lapovok, Acta Mater. 52, 405 (2004).

    Article  Google Scholar 

  66. R.Z. Valiev, D.V. Gunderov, A.V. Lukyanov, and V.G. Pushin, J. Mater. Sci. 47, 7848 (2012).

    Article  Google Scholar 

  67. A. Vorhauer, K. Rumpf, P. Granitzer, S. Kleber, H. Krenn, and R. Pippan, in Mater. Sci. Forum (Trans Tech Publ, 2006), pp. 299–304

  68. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng. A 238, 219 (1997).

    Article  Google Scholar 

  69. H. Miura, T. Sakai, A. Belyakov, G. Gottstein, M. Crumbach, and J. Verhasselt, Acta Mater. 51, 1507 (2003).

    Article  Google Scholar 

  70. F.J. Humphreys, and M. Hatherly, Recrystallization and related annealing phenomena (Elsevier, Netherlands, 2012).

    Google Scholar 

  71. J.E. Burke, and D. Turnbull, Prog. Met. Phys. 3, 220 (1952).

    Article  Google Scholar 

  72. J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Metall. Rev. 14, 1 (1969).

    Article  Google Scholar 

  73. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Prog. Mater. Sci. 60, 130 (2014).

    Article  Google Scholar 

  74. D. Ponge, and G. Gottstein, Acta Mater. 46, 69 (1998).

    Article  Google Scholar 

  75. T. Sakai, and J.J. Jonas, Plastic deformation: role of recovery and recrystallization (Elsevier Ltd, Amsterdam, Netherlands, 2011).

    Google Scholar 

  76. S. Gourdet, and F. Montheillet, Acta Mater. 51, 2685 (2003).

    Article  Google Scholar 

  77. S. Gourdet, and F. Montheillet, Mater. Sci. Eng. A 283, 274 (2000).

    Article  Google Scholar 

  78. U.F. Kocks, and H. Mecking, Prog. Mater. Sci. 48, 171 (2003).

    Article  Google Scholar 

  79. T.G. Langdon, Acta Metall. Mater. 42, 2437 (1994).

    Article  Google Scholar 

  80. M. Zehetbauer, and V. Seumer, Acta Metall. Mater. 41, 577 (1993).

    Article  Google Scholar 

  81. M. Zehetbauer, Acta Metall. Mater. 41, 589 (1993).

    Article  Google Scholar 

  82. T.G. Langdon, Mater. Sci. Eng. A 462, 3 (2007).

    Article  Google Scholar 

  83. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  Google Scholar 

  84. N. Hansen, Mater. Sci. Technol. (United Kingdom) 6, 1039 (1990).

    Article  Google Scholar 

  85. J. Gil Sevillano, P. van Houtte, and E. Aernoudt, Prog. Mater. Sci. 25, 69 (1980)

  86. A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers, Acta Mater. 55, 13 (2007).

    Article  Google Scholar 

  87. T. Ungár, and M. Zehetbauer, Scr. Mater. 35, 1467 (1996).

    Article  Google Scholar 

  88. M. Goerdeler, and G. Gottstein, Mater. Sci. Eng. A 309–310, 377 (2001).

    Article  Google Scholar 

  89. F.A. Mohamed, Acta Mater. 51, 4107 (2003).

    Article  Google Scholar 

  90. A.P. Zhilyaev, and T.G. Langdon, Prog. Mater. Sci. 53, 893 (2008).

    Article  Google Scholar 

  91. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, and Z.F. Zhang, Acta Mater. 57, 1586 (2009).

    Article  Google Scholar 

  92. K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, and Z. Horita, Acta Mater. 69, 68 (2014).

    Article  Google Scholar 

  93. Y.T. Zhu, T.C. Lowe, and T.G. Langdon, Scr. Mater. 51, 825 (2004).

    Article  Google Scholar 

  94. F.A. Mohamed, and H. Yang, Metall. Mater. Trans. A 41, 823 (2010).

    Article  Google Scholar 

  95. E.O. Hall, Proc. Phys. Soc. Sect. B 64, 747 (1951).

    Article  Google Scholar 

  96. N.J. Petch, Iron Steel Inst. 174, 25 (1953).

    Google Scholar 

  97. T.G. Nieh, and J. Wadsworth, Scr. Metall. Mater. 25, 955 (1991).

    Article  Google Scholar 

  98. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, Metall. Mater. Trans. A 29, 2503 (1998).

    Article  Google Scholar 

  99. A. Goloborodko, O. Sitdikov, R. Kaibyshev, H. Miura, and T. Sakai, Mater. Sci. Eng. A 381, 121 (2004).

    Article  Google Scholar 

  100. A.J. Barnes, J. Mater. Eng. Perform. 16, 440 (2007).

    Article  Google Scholar 

  101. D. Setman, E. Schafler, E. Korznikova, and M.J. Zehetbauer, Mater. Sci. Eng. A 493, 116 (2008).

    Article  Google Scholar 

  102. R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet, Acta Metall. Mater. 42, 2467 (1994).

    Article  Google Scholar 

  103. R.B. Figueiredo, S. Sabbaghianrad, A. Giwa, J.R. Greer, and T.G. Langdon, Acta Mater. 122, 322 (2017).

    Article  Google Scholar 

  104. F.A. Mohamed, Mater. Sci. Eng. A 655, 396 (2016).

    Article  Google Scholar 

  105. A. Bachmaier, and R. Pippan, Mater. Sci. Eng. A 528, 7589 (2011).

    Article  Google Scholar 

  106. C. Xiang, G. HUANG, S. LIU, T. HAN, B. JIANG, A. TANG, Y. ZHU, and F. PAN, Trans. Nonferrous Met. Soc. China 29, 437 (2019)

  107. R.W. Hayes, D. Witkin, F. Zhou, and E.J. Lavernia, Acta Mater. 52, 4259 (2004).

    Article  Google Scholar 

  108. J. Gubicza, S.V. Dobatkin, E. Khosravi, A.A. Kuznetsov, and J.L. Lábár, Mater. Sci. Eng. A 528, 1828 (2011).

    Article  Google Scholar 

  109. A.P. Zhilyaev, S. Swaminathan, A.A. Gimazov, T.R. McNelley, and T.G. Langdon, J. Mater. Sci. 43, 7451 (2008).

    Article  Google Scholar 

  110. X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon, Scr. Mater. 63, 560 (2010).

    Article  Google Scholar 

  111. Y.Z. Tian, S. Gao, L.J. Zhao, S. Lu, R. Pippan, Z.F. Zhang, and N. Tsuji, Scr. Mater. 142, 88 (2018).

    Article  Google Scholar 

  112. E. Schafler, and M.B. Kerber, Mater. Sci. Eng. A 462, 139 (2007).

    Article  Google Scholar 

  113. K. Edalati, T. Fujioka, and Z. Horita, Mater. Trans. 50, 44 (2009).

    Article  Google Scholar 

  114. R. Tejedor, K. Edalati, J.A. Benito, Z. Horita, and J.M. Cabrera, Mater. Sci. Eng. A 743, 597 (2019).

    Article  Google Scholar 

  115. H.W. Zhang, X. Huang, R. Pippan, and N. Hansen, Acta Mater. 58, 1698 (2010).

    Article  Google Scholar 

  116. F. Dalla Torre, P. Spätig, R. Schäublin, and M. Victoria, Acta Mater. 53, 2337 (2005)

  117. R.B. Figueiredo, and T.G. Langdon, J. Mater. Res. Technol. 14, 137 (2021).

    Article  Google Scholar 

  118. R.Z. Valiev, and T.G. Langdon, Prog. Mater. Sci. 51, 881 (2006).

    Article  Google Scholar 

  119. T.G. Langdon, Acta Mater. 61, 7035 (2013).

    Article  Google Scholar 

  120. J. Friedel, P. Lenglart, and G. Leman, J. Phys. Chem. Solids 25, 781 (1964).

    Article  Google Scholar 

  121. N.Q. Chinh, T. Csanádi, T. Győri, R.Z. Valiev, B.B. Straumal, M. Kawasaki, and T.G. Langdon, Mater. Sci. Eng. A 543, 117 (2012).

    Article  Google Scholar 

  122. J. E. Bird, A. K. Mukherjee, and J. E. Dorn, Isr. Univ. Press. Jerusalem, 1969) P 255, (1969)

  123. H.J. Frost, and M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon press, Oxford, U.K., 1982).

    Google Scholar 

  124. W.R. Cannon, and T.G. Langdon, J. Mater. Sci. 23, 1 (1988).

    Article  Google Scholar 

  125. S. White, Contrib. to. Miner. Petrol. 70, 193 (1979).

    Article  Google Scholar 

  126. K. Edalati, A. Yamamoto, Z. Horita, and T. Ishihara, Scr. Mater. 64, 880 (2011).

    Article  Google Scholar 

  127. S. Naghdy, L. Kestens, S. Hertelé, and P. Verleysen, Mater. Charact. 120, 285 (2016).

    Article  Google Scholar 

  128. T. Hebesberger, H.-P. Stüwe, A. Vorhauer, F. Wetscher, and R. Pippan, Acta Mater. 53, 393 (2005).

    Article  Google Scholar 

  129. F. Wetscher, A. Vorhauer, R. Stock, and R. Pippan, Mater. Sci. Eng. A 387, 809 (2004).

    Article  Google Scholar 

  130. F.A. Mohamed, and T.G. Langdon, Acta Metall. 23, 117 (1975).

    Article  Google Scholar 

  131. W. Jiang, H. Zhou, Y. Cao, J. Nie, Y. Li, Y. Zhao, M. Kawasaki, T.G. Langdon, and Y. Zhu, Adv. Eng. Mater. 22, 1900477 (2020).

    Article  Google Scholar 

  132. R. Kulagin, Y. Beygelzimer, Y. Ivanisenko, A. Mazilkin, B. Straumal, and H. Hahn, Mater. Lett. 222, 172 (2018).

    Article  Google Scholar 

  133. Y. Huang, M. Kawasaki, and T.G. Langdon, J. Mater. Sci. 49, 3146 (2014).

    Article  Google Scholar 

  134. Y. Huang, M. Kawasaki, A. Al-Zubaydi, and T.G. Langdon, J. Mater. Sci. 49, 6517 (2014).

    Article  Google Scholar 

  135. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, and B. Baudelet, Acta Mater. 44, 4705 (1996).

    Article  Google Scholar 

  136. S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, and G. Wilde, Acta Mater. 59, 1974 (2011).

    Article  Google Scholar 

  137. K. Edalati, J.M. Cubero-Sesin, A. Alhamidi, I.F. Mohamed, and Z. Horita, Mater. Sci. Eng. A 613, 103 (2014).

    Article  Google Scholar 

  138. R.B. Figueiredo, F.S.J. Poggiali, C.L.P. Silva, P.R. Cetlin, and T.G. Langdon, J. Mater. Sci. 51, 3013 (2016).

    Article  Google Scholar 

  139. V.Y. Gertsman, K. Tangri, and R.Z. Valiev, Acta Metall. Mater. 42, 1785 (1994).

    Article  Google Scholar 

  140. X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev, Mater. Sci. Eng. A 540, 1 (2012).

    Article  Google Scholar 

  141. T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, and K. Higashi, Scr. Mater. 64, 355 (2011).

    Article  Google Scholar 

  142. M. Y. Murashkin, E. V Bobruk, A. R. Kil’mametov, and R. Z. Valiev, Phys. Met. Metallogr. 108, 415 (2009).

  143. Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, and Y.T. Zhu, Mater. Sci. Eng. A 493, 123 (2008).

    Article  Google Scholar 

  144. X.-Y. Liu, and J.B. Adams, Acta Mater. 46, 3467 (1998).

    Article  Google Scholar 

  145. D.C. Paine, G.C. Weatherly, and K.T. Aust, J. Mater. Sci. 21, 4257 (1986).

    Article  Google Scholar 

  146. T. Malis, and M.C. Chaturvedi, J. Mater. Sci. 17, 1479 (1982).

    Article  Google Scholar 

  147. I. Sabirov, M.Y. Murashkin, and R.Z. Valiev, Mater. Sci. Eng. A 560, 1 (2013).

    Article  Google Scholar 

  148. X. Sauvage, M.Y. Murashkin, and R.Z. Valiev, Kov. Mater 49, 11 (2011).

    Google Scholar 

  149. V.V. Latysh, I.P. Semenova, G.H. Salimgareeva, I.V. Kandarov, Y.T. Zhu, T.C. Lowe, and R. Valiev, Mater. Sci. Forum 503–504, 763 (2006).

    Article  Google Scholar 

  150. S. Takaki, K. Kawasaki, and Y. Kimura, J. Mater. Process. Technol. 117, 359 (2001).

    Article  Google Scholar 

  151. B.P. Kashyap, and K. Tangri, Acta Metall. Mater. 43, 3971 (1995).

    Article  Google Scholar 

  152. X. Zhao, X. Yang, X. Liu, X. Wang, and T.G. Langdon, Mater. Sci. Eng. A 527, 6335 (2010).

    Article  Google Scholar 

  153. D.-H. Kang, and T.-W. Kim, Mater. Des. 31, S54 (2010).

    Article  Google Scholar 

  154. G. Purcek, G.G. Yapici, I. Karaman, and H.J. Maier, Mater. Sci. Eng. A 528, 2303 (2011).

    Article  Google Scholar 

  155. Y. Zhang, R.B. Figueiredo, S.N. Alhajeri, J.T. Wang, N. Gao, and T.G. Langdon, Mater. Sci. Eng. A 528, 7708 (2011).

    Article  Google Scholar 

  156. V.L. Sordi, M. Ferrante, M. Kawasaki, and T.G. Langdon, J. Mater. Sci. 47, 7870 (2012).

    Article  Google Scholar 

  157. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee, Scr. Mater. 45, 747 (2001).

    Article  Google Scholar 

  158. T.C. Lowe, and Y.T. Zhu, Adv. Eng. Mater. 5, 373 (2003).

    Article  Google Scholar 

  159. Y.T. Zhu, T.C. Lowe, R.Z. Valiev, V.V Stolyarov, V.V Latysh, and G.J. Raab, 6399215 (4 June 2002)

  160. X. Sauvage, F. Wetscher, and P. Pareige, Acta Mater. 53, 2127 (2005).

    Article  Google Scholar 

  161. Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.J. Fecht, Acta Mater. 51, 5555 (2003).

    Article  Google Scholar 

  162. N. Boucharat, R. Hebert, H. Rösner, R. Valiev, and G. Wilde, Scr. Mater. 53, 823 (2005).

    Article  Google Scholar 

  163. M. Zehetbauer, G. Steiner, E. Schafler, A.V. Korznikov, and E. Korznikova, Mater. Sci. Forum 503–504, 57 (2006).

    Article  Google Scholar 

  164. G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu, Mater. Sci. Eng. A 382, 30 (2004).

    Article  Google Scholar 

  165. R. Srinivasan, B. Cherukuri, and P.K. Chaudhury, Mater. Sci. Forum 503–504, 371 (2006).

    Article  Google Scholar 

  166. V. Varyukhin, and Y.T. Zhu, Nanostructured materials by high-pressure severe plastic deformation (Springer, Dordrecht, The Netherlands, 2006).

    Google Scholar 

  167. R. Lapovok, P.F. Thomson, R. Cottam, and Y. Estrin, Mater. Sci. Eng. A 410–411, 390 (2005).

    Article  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Sarathi Sahoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 80 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, P.S., Meher, A., Mahapatra, M.M. et al. Understanding the Fabrication of Ultrafine Grains Through Severe Plastic Deformation Techniques: An Overview. JOM 74, 3887–3909 (2022). https://doi.org/10.1007/s11837-022-05442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05442-6

Navigation