Skip to main content
Log in

Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Commercially pure titanium strengthened by severe plastic deformation constitutes an alternative to the use of complex Ti alloys in many medical or industrial applications. In this research, rods of grade 2 Ti were processed by up to six passes using Equal-channel angular pressing (ECAP) at 573 K followed by cold rolling at room or subzero temperatures. After four passes of ECAP, the grain size was refined down to the submicrometer scale and subsequent rolling led to further refinement. The microstructure was characterized by taking Vickers microhardness measurements and tensile testing was performed both at room temperature and in the temperature range of 573–773 K. The results show that at all temperatures the tensile strength is significantly improved by means of these processing techniques. At room temperature, the ultimate tensile strength of pure Ti after ECAP plus subzero rolling is close to that of the traditional Ti-6Al-4V alloy while maintaining adequate levels of elongation to failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  2. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33

    Article  Google Scholar 

  3. Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ (2003) Mater Sci Eng A343:45

    Google Scholar 

  4. Zhao X, Fu W, Yang X, Langdon TG (2008) Scr Mater 59:542

    Article  CAS  Google Scholar 

  5. Fan Z, Jiang H, Sun X, Song J, Zhang X, Xie C (2009) Mater Sci Eng A527:45

    CAS  Google Scholar 

  6. McKay GC, Mcnair R, MacDonald C, Grant MH (1996) Biomaterials 17:1339

    Article  CAS  Google Scholar 

  7. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A257:328

    CAS  Google Scholar 

  8. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143

    Article  CAS  Google Scholar 

  9. Esteban L, Elizalde MR, Ocana L (2007) J Mater Proc Technol (2007) 183:390

    Google Scholar 

  10. Jia D, Wang YM, Ramesh KT, Ma E, Zhu YT, Valiev RZ (2001) Appl Phys Lett 79:611

    Article  CAS  Google Scholar 

  11. Ko YG, Shin DH, Park K, Lee CS (2006) Scr Mater 54:1785

    Article  CAS  Google Scholar 

  12. Chen Y, Li Y, He L, Lu C, Ding H, Li Q (2008) Mater Lett 62:2821

    Article  CAS  Google Scholar 

  13. Wang Y, Chen M, Zhou F, Ma E (2008) Nature 419:912

    Article  Google Scholar 

  14. Ahn SH, Chun YB, Yu SH, Kim KH, Hwang SK (2010) Mater Sci Eng A528:165

    CAS  Google Scholar 

  15. Kalidindi SR, Salem AA, Doherty RD (2003) Adv Eng Mater 5:229

    Article  CAS  Google Scholar 

  16. Zherebtsov SV, Dyakonov GS, Salem AA, Malysheva SP, Salishchev GA, Semiatin SL (2011) Mater Sci Eng A528:3474

    CAS  Google Scholar 

  17. Shin DH, Kim I, Kim J, Kim YS, Semiatin SL (2003) Acta Mater 51:983

    Article  CAS  Google Scholar 

  18. Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ (1999) Nanostruct Mater 11:947

    Article  CAS  Google Scholar 

  19. Stolyarov VV, Zhu YT, Lowe TC, Valiev RZ (2001) Mater Sci Eng A303:82

    CAS  Google Scholar 

  20. Kang DH, Kim TW (2010) Mater Des 31:554

    Article  Google Scholar 

  21. Zhao X, Yang X, Liu X, Wang X, Langdon TG (2010) Mater Sci Eng A527:6335

    CAS  Google Scholar 

  22. Mendes Filho AA, Sordi VL, Kliauga AM, Ferrante M (2010) J Phys Conf Ser 240:012130

    Article  Google Scholar 

  23. Zhang Y, Figueiredo RB, Alhajeri SN, Wang JT, Gao N, Langdon TG (2011) Mater Sci Eng A528:7708

    Google Scholar 

  24. Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ (2001) Mater Sci Eng A299:59

    CAS  Google Scholar 

  25. Mendes AA (2010) Increasing mechanical strength of commercially pure titanium by equal-channel angular pressing: application in orthopaedic implants. Dissertation, Federal University of Sao Carlos

  26. Hoppel HW, Kautz M, Xu C, Murashkin M, Langdon TG, Valiev RZ, Mughrabi H (2006) Intl J Fatigue 28:1001

    Article  Google Scholar 

Download references

Acknowledgements

V.L. Sordi thanks FAPESP (Fundação de Apoio à Pesquisa no Estado de São Paulo) for financial support. This research was supported in part by the National Science Foundation of the United States under Grant No. DMR-0855009 (MK and TGL) and by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS (TGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor L. Sordi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sordi, V.L., Ferrante, M., Kawasaki, M. et al. Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling. J Mater Sci 47, 7870–7876 (2012). https://doi.org/10.1007/s10853-012-6593-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6593-x

Keywords

Navigation