Skip to main content
Log in

Initial Corrosion Behaviors of Fe20Cr25NiNb Stainless Steel in High Temperature Environment with Different Relative Humidity Values

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The initial corrosion behaviors of Fe20Cr25NiNb austenitic stainless steel are investigated at 1000°C in helium environment with different relative humidity values. Results show that thin chromia film and small nodules are formed for all oxidation conditions, and some white-colored large nodules are developed for the conditions with ≥ 20% relative humidity. The number and size of these large nodules increase slightly with the increase of relative humidity. These small nodules are primarily composed of the pre-formed chromia film and new-generated chromia phases, and their formation is strongly related to the oxidation of intergranular Fe2Nb phases. The white-colored large nodules mainly consist of three oxide layers: outer magnetite layer, inner spinel layer and (Cr, O)-rich healing layer. An accelerated oxidation is observed after the transition point for the conditions with ≥ 20% relative humidity, which is attributed to the formation of large nodules. The oxide growth primarily follows the linear law before the transition point and obeys the parabolic law after the transition point for higher relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.C. Rowlands, J.C.P. Garrett, L.A. Popple, A. Whittaker, and A. Hoaskey, Nucl. Energy 25, 267 (1986).

    Google Scholar 

  2. A. Shin, M. Chevalier, E. Laney, and J. Pearson, Mater. High Temp. 35, 30 (2018).

    Article  Google Scholar 

  3. A. Rudge, Mater. High Temp. 22, 11 (2005).

    Article  Google Scholar 

  4. R.N. Clark, Mapping of corrosion sites in advanced gas-cooled reactor fuel cladding in long term pond storage. Dissertation, Swansea University, (2018).

  5. C. Degueldre, R.J. Wilbraham, J. Fahy, and S.M. Green, J. Nucl. Mater. 543, 152633 (2021).

    Article  Google Scholar 

  6. C. Cabet and B. Duprey, Nucl. Eng. Des. 251, 139 (2012).

    Article  Google Scholar 

  7. R.N. Clark, J. Searle, T.L. Martin, W.S. Walters, and G. Williams, Corros. Sci. 165, 108365 (2020).

    Article  Google Scholar 

  8. IAEA, Review of Fuel Failures in Water Cooled Reactors, (IAEA Nuclear Energy Series No. NF-T-2.1, Vienna, 2010), pp. 1–2.

  9. R.B. Rebak, W.P. Gassmann and K.A. Terrani, Managing nuclear power plant safety with FeCrAl alloy fuel cladding. Paper presented at Top Safe 2017, IAEA Safety in Reactor Operation, Vienna, Austria, 12–16 February (2017).

  10. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements (Technical Information Center, Springfield, Virginia, 1976), pp 373–462.

    Book  Google Scholar 

  11. E. Nonbol, Description of the Advanced Gas Cooled Type of Reactor (AGR), (Risø National Laboratory, Roskilde, Denmark, NKS/RAK-2(96)TR-C2, 1996), pp. 10–12.

  12. D. Hambley, Technical basis for extending storage of the UK’s advanced gas-cooled reactor fuel. Paper presented at Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference, Salt Lake City, UT, 29 Sep–3 Oct 2013.

  13. H. Chen, H. Wang, Q. Sun, C. Long, T. Wei, S.H. Kim, and C. Jang, Corros. Sci. 145, 90 (2018).

    Article  Google Scholar 

  14. J.W. Tyler, Oxid. Met. 24, 149 (1985).

    Article  Google Scholar 

  15. P.K. Madden and V.M. Callen, J. Nucl. Mater. 113, 46 (1983).

    Article  Google Scholar 

  16. C. Degueldre, J. Fahy, O. Kolosov, R.J. Wilbraham, M. Döbeli, N. Renevier, and S. Ritter, J. Mater. Eng. Perform. 27, 2081 (2018).

    Article  Google Scholar 

  17. C. Barcellini, Microstructural Evolution of AGR Steel Cladding During Processing and Proton Irradiation. Dissertation, University of Manchester, (2019).

  18. G.C. Allen, P.A. Tempest, J.W. Tyler, and R.K. Wild, Oxid. Met. 21, 187 (1984).

    Article  Google Scholar 

  19. W.M. Pragnell and H.E. Evans, Oxid. Met. 66, 209 (2006).

    Article  Google Scholar 

  20. R.C. Lobb and H.E. Evans, Corros. Sci. 24, 385 (1984).

    Article  Google Scholar 

  21. H.E. Evans, Mater. Sci. Tech. 4, 414 (1988).

    Article  Google Scholar 

  22. R.W. Swindeman, Development of a modified 310 stainless steel. Fossil Energy Program Annual Progress Report for April 1996 Through March 1997, Oak Ridge National Laboratory Report ORNL-6924, (1997).

  23. C.S. Tedmon, D.A. Vermilyea, and J.H. Rosolowski, J. Electrochem. Soc. 118, 192 (1971).

    Article  Google Scholar 

  24. B. Shassere, Y. Yamamoto, J. Poplawsky, W. Guo, and S.S. Babu, Metall. Mater. Trans. A 48, 4598 (2017).

    Article  Google Scholar 

  25. N. Takata, H. Ghassemi-Armaki, M. Takeyama, and S. Kumar, Intermetallics 70, 7 (2016).

    Article  Google Scholar 

  26. H. Chen, S.H. Kim, and C. Jang, J. Mater. Sci. 55, 3652 (2020).

    Article  Google Scholar 

  27. H. Sakai, T. Tsuji, and K. Naito, J. Nucl. Sci. Tech. 21, 844 (1984).

    Article  Google Scholar 

  28. D.J. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, Oxford, 2008), pp 315–356.

    Book  Google Scholar 

  29. H. Yin, W.Y.D. Yuen, and D.J. Young, Mater. Corros. 63, 869 (2012).

    Article  Google Scholar 

  30. T.P. Li, High Temperature Oxidation and Hot Corrosion of Metals (Chemical Industry Press, Beijing, 2003), pp 29–62.

    Google Scholar 

  31. C. Nico, T. Monteiro, and M.P.F. Graça, Prog. Mater. Sci. 80, 1 (2016).

    Article  Google Scholar 

  32. T. Wei, J. Lin, C. Long, and H. Chen, Acta Metall. Sin. 52, 209 (2015).

    Google Scholar 

  33. H. Chen, S.H. Kim, C. Kim, J. Chen, and C. Jang, Corros. Sci. 156, 16 (2019).

    Article  Google Scholar 

  34. A.S. Khanna, High Temperature Corrosion (World Scientific, Singapore, 2016), pp 1–32.

    Book  Google Scholar 

  35. K. Zhao, S. Ouyang, Y. Liu, B. Liu, X. Liang, and Y. Wang, Trans. Nonferrous Met. Soc. China 29, 526 (2019).

    Article  Google Scholar 

  36. J. Yuan, W. Wang, H. Zhang, L. Zhu, S. Zhu, and F. Wang, Corros. Sci. 109, 36 (2016).

    Article  Google Scholar 

  37. S.R.J. Saunders, M. Monteiro, and F. Rizzo, Prog. Mater. Sci. 53, 775 (2008).

    Article  Google Scholar 

  38. F.W. Murray, J. Appl. Meteorol. 6, 203 (1967).

    Article  Google Scholar 

  39. M. Michalik, M. Hänsel, J. Zurek, L. Singheiser, and W.J. Quadakkers, Mater. High Temp. 22, 213 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of Guangdong Basic and Applied Basic Research Foundation (2021A1515012411) and Sichuan Science and Technology Program (2018JY0155, 2019YJ0685).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongsheng Chen or Xuesong Leng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 798 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wang, H., Sun, Q. et al. Initial Corrosion Behaviors of Fe20Cr25NiNb Stainless Steel in High Temperature Environment with Different Relative Humidity Values. JOM 74, 3921–3934 (2022). https://doi.org/10.1007/s11837-022-05425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05425-7

Navigation