Skip to main content
Log in

Effect of high-temperature supercritical carbon dioxide exposure on the microstructure and tensile properties of diffusion-bonded Alloy 690

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Alloy 690 was diffusion-bonded and exposed to the high-temperature supercritical CO2 environment, and the effect of exposure on the microstructure and mechanical properties was investigated. In the as-bonded joint, some small carbides are discontinuously arranged along the bonding line. After exposure at 550 °C and 600 °C, the continuous carbides are developed and occupy all the grain boundaries and bonding line. The continuous carbides transform into the discrete large particles when the exposure temperature further increases to 650 °C. With the increase in exposure temperature, the tensile strength and microhardness of the joints decrease, while the elongation first slightly increases and then decreases at 650 °C. For the as-bonded joint and the joints exposed at 550 °C and 600 °C, the fracture occurs at the parent Alloy 690 and the main fracture mode is the ductile dimple fracture. However, for the joint exposed at 650 °C, the fracture occurs at the bond line with a manner of brittle fracture. The degradation of strengths and elongation after exposure to supercritical CO2 at 650 °C were associated with the growth of carbides along the bond line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations. They will be shared upon reasonable request.

References

  1. Brun K, Friedman P, Dennis R (2017) Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles. Woodhead Publishing, Sawston

    Google Scholar 

  2. Crespi F, Gavagnin G, Sánchez D, Martínez GS (2017) Supercritical carbon dioxide cycles for power generation: a review. Appl Energy 195:152–183

    Article  CAS  Google Scholar 

  3. Sharan P, Neises T, McTigue JD, Turchi C (2019) Cogeneration using multi-effect distillation and a solar-powered supercritical carbon dioxide Brayton cycle. Desalination 459:20–33

    Article  CAS  Google Scholar 

  4. Liang Z, Gui Y, Wang Y, Zhao Q (2019) Corrosion performance of heat-resisting steels and alloys in supercritical carbon dioxide at 650 °C and 15 MPa. Energy 175:345–352

    Article  CAS  Google Scholar 

  5. Kim ES, Oh CH, Sherman S (2008) Simplified optimum sizing and cost analysis for compact heat exchanger in VHTR. Nucl Eng Des 238:2635–2647

    Article  CAS  Google Scholar 

  6. Shah RK, Sekulic DP (2003) Fundamentals of Heat Exchanger Design. Wiley, Hoboken

    Book  Google Scholar 

  7. Lee Y, Lee JI (2014) Structural assessment of intermediate printed circuit heat exchanger for sodium-cooled fast reactor with supercritical CO2 cycle. Ann Nucl Energy 73:84–95

    Article  CAS  Google Scholar 

  8. Sabharwall P, Clark DE, Mizia RE, Glazoff MV, McKellar MG (2013) Diffusion-welded microchannel heat exchanger for industrial processes. J Therm Serv Eng Appl 5:01109

    Google Scholar 

  9. Subramanian GO, Lee HJ, Kim SH, Jang C (2018) Corrosion and carburization behaviour of Ni–xCr binary alloys in a high-temperature supercritical-carbon dioxide environment. Oxid Met 89:683–697

    Article  CAS  Google Scholar 

  10. Lee HJ, Kim H, Kim SH, Jang C (2015) Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment. Corros Sci 99:227–239

    Article  CAS  Google Scholar 

  11. Lee HJ, Subramanian GO, Kim SH, Jang C (2016) Effect of pressure on the corrosion and carburization behavior of chromia-forming heat-resistant alloys in high-temperature carbon dioxide environments. Corros Sci 111:649–658

    Article  CAS  Google Scholar 

  12. Lee HJ, Kim SH, Jang C (2018) Characterization of Alloy 600 joints exposed to a high-temperature supercritical-carbon dioxide environment. Mater Charact 138:245–254

    Article  CAS  Google Scholar 

  13. Firouzdor V, Cao G, Sridharan K, Anderson M, Allen TR (2013) Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment. Corros Sci 69:281–291

    Article  CAS  Google Scholar 

  14. Holcomb GR, Carney C, Doğan ÖN (2016) Oxidation of alloys for energy applications in supercritical CO2 and H2O. Corros Sci 109:22–35

    Article  CAS  Google Scholar 

  15. Olivares RI, Young DJ, Marvig P, Stein W (2015) Alloys SS316 and Hastelloy-C276 in supercritical CO2 at high temperature. Oxid Met 84:585–606

    Article  CAS  Google Scholar 

  16. Rouillard F, Furukawa T (2016) Corrosion of 9–12Cr ferritic–martensitic steels in high-temperature CO2. Corros Sci 105:120–132

    Article  CAS  Google Scholar 

  17. Cao G, Firouzdor V, Sridharan K, Anderson M, Allen TR (2012) Corrosion of austenitic alloys in high temperature supercritical carbon dioxide. Corros Sci 60:246–255

    Article  CAS  Google Scholar 

  18. Tan L, Anderson M, Taylor D, Allen TR (2011) Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide. Corros Sci 53:3273–3280

    Article  CAS  Google Scholar 

  19. Zhu Z, Cheng Y, Xiao B, Khan HI, Xu H, Zhang N (2019) Corrosion behavior of ferritic and ferritic-martensitic steels in supercritical carbon dioxide. Energy 175:1075–1084

    Article  CAS  Google Scholar 

  20. Chen H, Kim SH, Kim C, Chen J, Jang C (2019) Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650 °C. Corros Sci 156:16–31

    Article  CAS  Google Scholar 

  21. Chen H, Kim SH, Long C, Kim C, Jang C (2018) Oxidation behavior of high-strength FeCrAl alloys in a high-temperature supercritical carbon dioxide environment. Prog Nat Sci Mater Int 28:731–739

    Article  CAS  Google Scholar 

  22. Lee HJ, Kim SH, Kim H, Jang C (2016) Corrosion and carburization behavior of Al-rich surface layer on Ni-base alloy in supercritical-carbon dioxide environment. Appl Surf Sci 388:483–490

    Article  CAS  Google Scholar 

  23. Sah I, Kim D, Lee HJ, Jang C (2013) Development and oxidation resistance evaluation of Al-rich surface layer on Alloy 617. Surf Coat Technol 236:400–404

    Article  CAS  Google Scholar 

  24. Kim SH, Subramanian GO, Kim C, Jang C, Park KM (2018) Surface modification of austenitic stainless steel for corrosion resistance in high temperature supercritical-carbon dioxide environment. Surf Coat Technol 349:415–425

    Article  CAS  Google Scholar 

  25. Takeda T, Kunitomi K, Rorie T, Iwata K (1997) Feasibility study on the applicability of a diffusion-welded compact intermediate heat exchanger to next-generation high temperature gas-cooled reactor. Nucl Eng Des 168:11–21

    Article  CAS  Google Scholar 

  26. Hesselgreaves JE (2001) Compact heat exchangers: selection, design and operation. Pergamon Press, Oxford

    Google Scholar 

  27. Mizia RE (2010) Scoping investigation of diffusion bonding for NGNP process application heat exchangers. Idaho National Laboratory Report, INL/PLN-3565

  28. Basuki W, Kraft O, Aktaa J (2012) Optimization of solid-state diffusion bonding of Hastelloy C-22 for micro heat exchanger applications by coupling of experiments and simulations. Mater Sci Eng A 538:340–348

    Article  CAS  Google Scholar 

  29. Mylavarapu SK, Sun X, Christensen RN, Unocic RR, Glosup RE, Patterson MW (2012) Fabrication and design aspects of high-temperature compact diffusion bonded heat exchangers. Nucl Eng Des 249:49–56

    Article  CAS  Google Scholar 

  30. Kapoor M, Dogan O, Rozman K, Hawk J, Wilson A, Estrange T, Narayanan V (2016) Diffusion bonding of H230 Ni-superalloy for application in microchannel heat exchangers. In: The 5th international symposium-supercritical CO2 power cycles, San Antonio, Texas, 28–31 March 2016

  31. Sah I, Kim D, Lee HJ, Jang C (2013) The recovery of tensile ductility in diffusion-bonded Ni-base alloys by post-bond heat treatments. Mater Des 47:581–589

    Article  CAS  Google Scholar 

  32. Dostal V, Hejzlar P, Driscoll MJ (2006) High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors. Nucl Technol 154:265–282

    Article  CAS  Google Scholar 

  33. Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60:130–207

    Article  CAS  Google Scholar 

  34. Nah JJ, Kang HG, Huha MY, Engler O (2008) Effect of strain states during cold rolling on the recrystallized grain size in an aluminum alloy. Scr Mater 58:500–503

    Article  CAS  Google Scholar 

  35. Zhang JY, Sun MY, Xu B, Li DZ (2018) Interfacial microstructural evolution and metallurgical bonding mechanisms for IN718 superalloy joint produced by hot compressive bonding. Metall Mater Trans B 49:2152–2162

    Article  CAS  Google Scholar 

  36. Shirzadi AA, Wallach ER (2004) New method to diffusion bond superalloys. Sci Technol Weld Join 9:37–40

    Article  CAS  Google Scholar 

  37. Gladman T (1966) On the theory of the effect of precipitate particles on grain growth in metals. Proc R Soc Lond A 294:298–309

    Article  CAS  Google Scholar 

  38. Gottstein G (2004) Physical foundations of materials science. Springer, Berlin

    Book  Google Scholar 

  39. Jiao SY, Zhang MC, Zheng L, Dong JX (2010) Investigation of carbide precipitation process and chromium depletion during thermal treatment of Alloy 690. Metall Mater Trans A 41:26–42

    Article  CAS  Google Scholar 

  40. Kai JJ, Yu GP, Tsai CH, Liu MN, Yao SC (1989) The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690. Metall Trans A 20:2057–2067

    Article  Google Scholar 

  41. Lo KH, Shek CH, Lai JKL (2009) Recent developments in stainless steels. Mater Sci Eng R 65:39–104

    Article  CAS  Google Scholar 

  42. Hua R, Bai G, Li J, Zhang J, Zhang T, Fu H (2012) Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni–Cr–W based superalloy. Mater Sci Eng A 548:83–88

    Article  CAS  Google Scholar 

  43. Hong HU, Nam SW (2002) The occurrence of grain boundary serration and its effect on the M23C6 carbide characteristics in an AISI 316 stainless steel. Mater Sci Eng A 332:255–261

    Article  Google Scholar 

  44. Sundararaman M, Mukhopadhyay P, Banerjee S (1997) Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties. Superalloys 718:625–706

    Google Scholar 

  45. Wei CN, Bor HY, Chang L (2010) The effects of carbon content on the microstructure and elevated temperature tensile strength of a nickel-base superalloy. Mater Sci Eng A 527:3741–3747

    Article  CAS  Google Scholar 

  46. Jena AK, Chaturvedi MC (1984) The role of alloying elements in the design of nickel-base superalloys. J Mater Sci 19:3121–3139. https://doi.org/10.1007/BF00549796

    Article  CAS  Google Scholar 

  47. Van Stone RH, Cox TB, Low JR, Psioda JA (1985) Microstructural aspects of fracture by dimpled rupture. Int Metals Rev 30:157–180

    Google Scholar 

  48. Ott RT, Sansoz F, Molinari JF, Almer J, Ramesh KT, Hufnagel TC (2005) Micromechanics of deformation of metallic-glass–matrix composites from in situ synchrotron strain measurements and finite element modeling. Acta Mater 53:1883–1893

    Article  CAS  Google Scholar 

  49. Kim D, Sah I, Jang C (2011) Effects of aging in high temperature helium environments on room temperature tensile properties of nickel-base superalloys. Mater Sci Eng A 528:1713–1720

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Engineering Research Center Program (No. 2016R1A5A1013919), the Nuclear R&D Program (No. 2018M2A8A4081309) of the MOST/NRF, the BK-Plus Program of the MSIP/NRF of Rep. of Korea and the Sichuan Science and Technology Program of P.R. China (No. 2018JY0155). H. Chen acknowledges support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changheui Jang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Kim, S.H. & Jang, C. Effect of high-temperature supercritical carbon dioxide exposure on the microstructure and tensile properties of diffusion-bonded Alloy 690. J Mater Sci 55, 3652–3667 (2020). https://doi.org/10.1007/s10853-019-04222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04222-z

Navigation