Skip to main content
Log in

Hot corrosion behaviors of Super 304H austenitic stainless steel pre-coated in Na2SO4–25%NaCl mixture salt film

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Hot corrosion rates of Super 304H austenitic stainless steel pre-coated in Na2SO4–25%NaCl mixture salt film in air at 650 °C and 750 °C have been investigated by corrosion kinetics curves. The corrosion products are examined by means of X-ray diffraction and scanning electron microscopy coupled with energy-dispersive spectrometer, and electron probe micro-analyzer to analyze the scale structure and element distribution of the cross section. The results indicate that the kinetics curves are similar and display parabolic growth, and the mass gain obviously increases with the increasing temperature. A two-layer oxide scale composed of Fe oxides containing CuFe2O4 and Cr2O3 forms on the surface of the alloy and easily exfoliates with extending corrosion time or with improving corrosion temperature. Moreover, a corrosion-affected zone with micropores and micro-cracks appears beneath the oxide scale. It is concluded that the selective oxidation occurs and a protective oxide scale forms at the early corrosion stage. The melt salts destroy the integrity of the oxide scale and accelerate hot corrosion of the alloy by the cyclical oxidation–chlorination during the further corrosion processing. In addition, internal sulfidation also contributes to the corrosion of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Iseda, H. Okada, H. Sembaan, M. Igarashi, Energy Mater. 2 (2007) 199–206.

    Article  Google Scholar 

  2. G.Y. Lai, High temperature corrosion of engineering alloys, American Society for Metals, Metals Park, Ohio, 1990.

    Google Scholar 

  3. T.S. Qin, S.S. Li, Coal 2 (2001) 42–52.

    Google Scholar 

  4. Y. Shinata, F. Takahashi, K. Hashiura, Mater. Sci. Eng. 87 (1987) 399–405.

    Article  Google Scholar 

  5. Y. Bourhis, C. St John, Oxid. Met. 9 (1975) 507–528.

    Article  Google Scholar 

  6. Y. Niu, F. Gesmundo, T.F. Viani, W. Wu, Oxid. Met. 42 (1994) 265–284.

    Article  Google Scholar 

  7. N. Hiramatsu, Y. Uematsu, T. Tanaka, M. Kinugasa, Mater. Sci. Eng. A 120–121 (1989) 319–328.

    Article  Google Scholar 

  8. Y.H. Shu, F.H. Wang, W.T. Wu, Oxid. Met. 54 (2000) 457–471.

    Article  Google Scholar 

  9. Y. Shu, F. Wang, Oxid. Met. 59 (2003) 201–204.

    Article  Google Scholar 

  10. D.M. Johnson, D.P. Whittle, J. Stringer, Corros. Sci. 15 (1975) 721–739.

    Article  Google Scholar 

  11. R. Viswanaathan, R. Purgert, U. Rao, Int. J. Pres. Ves. Pip. 83 (2006) 778–783.

    Article  Google Scholar 

  12. A. Iseda, in: Proc. 14th Conference on ‘Electric power supply industry’, CEPSI, Fukuoka, Japan, 2002, pp. 350–355.

  13. L.L. Wang, L.H. Zhu, Q.J. Wang, Trans. Mater. Heat Treat. 32 (2011) 127–131.

    Google Scholar 

  14. G.D. Smith, H.W. Sizek, Corrosion 2000, NACE International, Houston, Orlando, Florida, 2000.

    Google Scholar 

  15. J.H. Kim, D.I. Kim, J.H.Shim, K.W. Yi, Corros. Sci. 77 (2013) 397–402.

    Article  Google Scholar 

  16. D. Deb, S. RamakrishnaIyer, V.M. Radhakrishnan, Mater. Lett. 29 (1996) 19–23.

    Article  Google Scholar 

  17. A.U. Seybolt, Oxid. Met. 2 (1970) 161–171.

    Article  Google Scholar 

  18. C.C. Tsaur, J.C. Rock, C.J. Wang, Y.H. Su, Mater. Chem. Phys. 89 (2005) 445–453.

    Article  Google Scholar 

  19. O. Knacke, O. Kubaschewski, K. Hesselmann, Thermomechanical properties of inorganic substances, Springer-Verlag, Berlin, Heidelberg, 1991.

    Google Scholar 

  20. Y. Shinata, Oxid. Met. 27 (1987) 315–320.

    Article  Google Scholar 

  21. S.Q. Zhao, X.S. Xie, G.D. Smith, S.J. Patel, Mater. Chem. Phys. 90 (2005) 275–281.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 51171037, 51134013 and U1610256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, Tj., Zhao, J. et al. Hot corrosion behaviors of Super 304H austenitic stainless steel pre-coated in Na2SO4–25%NaCl mixture salt film. J. Iron Steel Res. Int. 25, 1149–1155 (2018). https://doi.org/10.1007/s42243-018-0161-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0161-9

Keywords

Navigation