Skip to main content
Log in

Phase Evolution of Novel MoNbSiTiW Refractory High-Entropy Alloy Prepared by Mechanical Alloying

  • High Temperature Alloys: Manufacturing, Processing, and Repair
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Refractory high-entropy alloys (RHEAs) are new types of material that have been developed for high-temperature applications. RHEAs should have enhanced high-temperature strength while maintaining a sufficient level of room-temperature toughness. The phase evolution of novel MoNbSiTiW RHEAs was investigated after mechanical alloying (MA) for 35 h. X-ray diffraction (XRD) was used to analyze the phase evolution, and analysis of particle morphologies was done using a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). XRD results indicate that NbMoSiTiW RHEAs with up to 10 h of mechanical alloying have a stable solid solution phase with body centered cubic (BCC) structure. Further milling of NbMoSiTiW RHEAs promotes the evolution of intermetallic compounds until 35 h of mechanical alloying. The Williamson-Hall process was incorporated for crystalline size and lattice strain measurement and the results show that, after 35 h of mechanical alloying, the crystalline size decreased from 298 nm to 25 nm, and an enhancement in lattice strain was observed from 0.1% to 0.65%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299. (2004).

    Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng., A 375–377, 213. (2004).

    Article  Google Scholar 

  3. A. Kumar, A.K. Swarnakar, A. Basu, and M. Chopkar, J. Alloy. Compd. 748, 889. (2018).

    Article  Google Scholar 

  4. K. Raja Rao and S.K. Sinha, Materials Science Forum 978, 145 (2020).

  5. V.K. Soni, S. Sanyal, and S.K. Sinha, Vacuum 174, 109173. (2020).

    Article  Google Scholar 

  6. R. Sriharitha, B.S. Murty, and R.S. Kottada, Intermetallics (Barking) 32, 119. (2013).

    Article  Google Scholar 

  7. S. Praveen, B.S. Murty, and R.S. Kottada, JOM 65, 1797. (2013).

    Article  Google Scholar 

  8. J.A. Lemberg, and R.O. Ritchie, Adv. Mater. 24, 3445. (2012).

    Article  Google Scholar 

  9. J.H. Perepezko, Science (1979) 326, 1068 (2009).

  10. R.E. Schafrik, and R. Sprague, Adv. Mater. Process. 5, 29. (2004).

    Google Scholar 

  11. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics (Barking) 18, 1758. (2010).

    Article  Google Scholar 

  12. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics (Bark.) 19, 698. (2011).

    Article  Google Scholar 

  13. A. Poulia, E. Georgatis, A. Lekatou, and A.E. Karantzalis, Int. J. Refract Metal Hard Mater. 57, 50. (2016).

    Article  Google Scholar 

  14. A. Kumar, P. Dhekne, A.K. Swarnakar, and M.K. Chopkar, Mater. Lett. 188, 73. (2017).

    Article  Google Scholar 

  15. A. Kumar, P. Dhekne, A.K. Swarnakar, and M. Chopkar, Mater. Res. Express 6, 026532. (2018).

    Article  Google Scholar 

  16. S. Shajahan, A. Kumar, M. Chopkar, and A. Basu, Mater. Res. Express 7, 016532. (2020).

    Article  Google Scholar 

  17. A. Kumar, D. Parganiha, J. Verma, P. Biswas, A. Basu, and M. Chopkar, Philos. Mag. Lett. 99, 302. (2019).

    Article  Google Scholar 

  18. R. Chandrakar, A. Kumar, S. Chandraker, K.R. Rao, and M. Chopkar, Vacuum 184, 109943. (2021).

    Article  Google Scholar 

  19. A. Kumar, R. Chandrakar, S. Chandraker, K.R. Rao, and M. Chopkar, J. Alloy. Compd. 856, 158193. (2021).

    Article  Google Scholar 

  20. A. Kumar, A.K. Swarnakar, and M. Chopkar, J. Mater. Eng. Perform. 27, 3304. (2018).

    Article  Google Scholar 

  21. A. Kumar, and M. Chopkar, J. Mater. Sci. Nanotechnol. 5(2), 201. (2017).

    Google Scholar 

  22. A. Kumar, A. Rajimwale, and M. Chopkar, IOP Conf. Ser. Mater. Sci. Eng. 383, 012005. (2018).

    Article  Google Scholar 

  23. A. Kumar, A. Arora, R. Chandrakar, K. Raja Rao, and M. Chopkar, Mater. Today: Proc. 27, 1310. (2020).

    Google Scholar 

  24. A. Kumar, A. Arora, R. Chandrake, K.R. Rao, and M. Chopkar, AIP Conf. Proc. 2247, 050012. (2020).

    Article  Google Scholar 

  25. A. Kumar, and M. Chopkar, AIP Conf. Proc. 1953, 040034. (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the All-India Council for Technical Education (referred to as AICTE, New Delhi), India, for funding the present work under the Research Promotion scheme (RPS) project no: 8-98/FDC/RPS (POLICY -1)/2019-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, O., Chandrakar, R., Chandraker, S. et al. Phase Evolution of Novel MoNbSiTiW Refractory High-Entropy Alloy Prepared by Mechanical Alloying. JOM 74, 3329–3333 (2022). https://doi.org/10.1007/s11837-022-05417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05417-7

Navigation