Skip to main content

Advertisement

Log in

Allicin-Loaded Hydroxyapatite: Enhanced Release, Cytocompatibility, and Antibacterial Properties for Bone Tissue Engineering Applications

  • Interactions between Biomaterials and Biological Tissues and Cells
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Allicin, the active compound of garlic extract, is a naturally sourced biomolecule, which promotes a vast range of health benefits. However, the limited stability of allicin restricts its applications in tissue engineering. Additionally, the detailed effects of allicin in bone health are yet to be explored. Our work reports on the fabrication of a novel allicin-loaded hydroxyapatite drug delivery system with enhanced biological properties. The fabricated system shows excellent antibacterial efficiency against S. aureus after 36 h of bacterial interaction with a sample. The allicin release kinetics are enhanced with polycaprolactone (PCL). The obtained results after 20 days of drug release study indicate that PCL coating leads to an increase in cumulative allicin release from ~ 35% to 70% at a physiological pH of 7.4. These scaffolds maintain stability during the whole period of drug release. Cytocompatibility of tested compositions with osteoblasts indicates enhanced cell viability and good filopodial attachment on the sample surface at day 7. These allicin-loaded antibacterial and cytocompatible scaffolds can find applications as localized delivery vehicles for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Litwic, M.H. Edwards, E.M. Dennison, and C. Cooper, Br. Med. Bull. 105, 185 (2013).

    Article  Google Scholar 

  2. S. Bose, D. Banerjee, and A.A. Vu, ACS Appl. Mater. Interfaces 14, 12964 (2022).

    Article  Google Scholar 

  3. J.E. Noe, Integr. Cancer Ther. 8, 409 (2009).

    Google Scholar 

  4. L. Tavares, L. Santos, and C.P. Zapata Noreña, Trends Food Sci. Technol. 114, 232 (2021).

    Article  Google Scholar 

  5. R. Shouk, A. Abdou, K. Shetty, D. Sarkar, and A.H. Eid, Nutr. Res. 34, 106 (2014).

    Article  Google Scholar 

  6. D. Jamindar, N. Patidar, and S. Jain, J. Drug Deliv. Ther. 7, 69 (2017).

    Google Scholar 

  7. M. Nakamoto, K. Kunimura, J. Suzuki, and Y. Kodera, Exp. Ther. Med. 19, 1550 (2020).

    Google Scholar 

  8. K. Kundu, A. Afshar, D.R. Katti, M. Edirisinghe, and K.S. Katti, Compos. Sci. Technol. 202, 108598 (2021).

    Article  Google Scholar 

  9. K. Li, S. Li, F. Ai, J. Yan, and K. Zhou, JOM 73, 1745 (2021).

    Article  Google Scholar 

  10. M. Sygnatowicz, K. Keyshar, and A. Tiwari, JOM 62, 65 (2010).

    Article  Google Scholar 

  11. S. Bose and S. Tarafder, Acta Biomater. 8, 1401 (2012).

    Article  Google Scholar 

  12. S. Bose, N. Sarkar, and D. Banerjee, Acta Biomater. 126, 63 (2021).

    Article  Google Scholar 

  13. S. Bose, N. Sarkar, and D. Banerjee, Mater. Today Chem. 8, 110 (2018).

    Article  Google Scholar 

  14. S. Banerjee, C. Ji, J.E. Mayfield, A. Goel, J. Xiao, J.E. Dixon, and X. Guo, Proc. Natl. Acad. Sci. 115, 8155 (2018).

    Article  Google Scholar 

  15. S. Chen, L. Zhu, W. Wen, L. Lu, C. Zhou, B. Luo, and A.C.S. Biomater, Sci. Eng. 5, 2506 (2019).

    Google Scholar 

  16. A. Siddiqua and S. Mittapally, Pharma Innov. 6, 329 (2017).

    Google Scholar 

  17. P.V.F. Lemos, H.R. Marcelino, L.G. Cardoso, C.O. de Souza, and J.I. Druzian, Int. J. Biol. Macromol. 184, 218 (2021).

    Article  Google Scholar 

  18. L. Guo, Z. Liang, L. Yang, W. Du, T. Yu, H. Tang, C. Li, and H. Qiu, J. Control. Release 338, 571 (2021).

    Article  Google Scholar 

  19. B.S. Zolnik and D.J. Burgess, J. Control. Release 122, 338 (2007).

    Article  Google Scholar 

  20. A.A. Volokhova, V.L. Kudryavtseva, T.I. Spiridonova, I. Kolesnik, S.I. Goreninskii, R.V. Sazonov, G.E. Remnev, and S.I. Tverdokhlebov, Mater. Today Commun. 26, 102134 (2021).

    Article  Google Scholar 

  21. B. Joseph, R. Augustine, N. Kalarikkal, S. Thomas, B. Seantier, and Y. Grohens, Mater. Today Commun. 19, 319 (2019).

    Article  Google Scholar 

  22. A. Rai, S. Senapati, S.K. Saraf, and P. Maiti, J. Mater. Chem. B 4, 5151 (2016).

    Article  Google Scholar 

  23. M. Falahati, P. Ahmadvand, S. Safaee, Y.-C. Chang, Z. Lyu, R. Chen, L. Li, and Y. Lin, Mater. Today 40, 215 (2020).

    Article  Google Scholar 

  24. S. Tarafder, S. Bose, and A.C.S. Appl, Mater. Interfaces 6, 9955 (2014).

    Article  Google Scholar 

  25. Ł Rumian, H. Tiainen, U. Cibor, M. Krok-Borkowicz, M. Brzychczy-Włoch, H.J. Haugen, and E. Pamuła, Mater. Sci. Eng. C 69, 856 (2016).

    Article  Google Scholar 

  26. J. Lee, M.M. Farag, E.K. Park, J. Lim, and H. Yun, Mater. Sci. Eng. C 36, 252 (2014).

    Article  Google Scholar 

  27. L. Wang, M. Wang, M. Li, Z. Shen, Y. Wang, Y. Shao, and Y. Zhu, Cryst. Eng. Comm. 20, 5744 (2018).

    Article  Google Scholar 

  28. S. Bose, A. Bhattacharjee, D. Banerjee, A.R. Boccaccini, and A. Bandyopadhyay, Addit. Manuf. 40, 101895 (2021).

    Google Scholar 

  29. V.K. Balla, W. Xue, S. Bose, and A. Bandyopadhyay, Acta Biomater. 5, 2800 (2009).

    Article  Google Scholar 

  30. P. Cañizares, I. Gracia, L.A. Gómez, A. García, C.M. de Argila, D. Boixeda, and L. de Rafael, Biotechnol. Prog. 20, 32 (2004).

    Article  Google Scholar 

  31. Q. Lu, P.-M. Lu, J.-H. Piao, X.-L. Xu, J. Chen, L. Zhu, and J.-G. Jiang, LWT Food Sci. Technol. 57, 686 (2014).

    Article  Google Scholar 

  32. B.J. Divya, B. Suman, M. Venkataswamy, and K. Thyagaraju, Int. J. Curr. Pharm. Res. 9, 42 (2017).

    Article  Google Scholar 

  33. M.-P. Ginebra, T. Traykova, and J.A. Planell, Biomaterials 27, 2171 (2006).

    Article  Google Scholar 

  34. J. Borlinghaus, F. Albrecht, M.C.H. Gruhlke, I.D. Nwachukwu, and A.J. Slusarenko, Molecules 19, 12591 (2014).

    Article  Google Scholar 

  35. S. Tarafder, S. Banerjee, A. Bandyopadhyay, and S. Bose, Langmuir 26, 16625 (2010).

    Article  Google Scholar 

  36. T. Padrão, C.C. Coelho, P. Costa, N. Alegrete, F.J. Monteiro, and S.R. Sousa, Mater. Sci. Eng. C 119, 111329 (2021).

    Article  Google Scholar 

  37. J.E. Shea and S.C. Miller, Adv. Drug Deliv. Rev. 57, 945 (2005).

    Article  Google Scholar 

  38. T.F. Durand-Reville, A.A. Miller, J.P. O’Donnell, X. Wu, M.A. Sylvester, S. Guler, R. Iyer, A.B. Shapiro, N.M. Carter, and C. Velez-Vega, Nature 597, 698 (2021).

    Article  Google Scholar 

  39. G. Ding, J. Zhao, and D. Jiang, Exp. Ther. Med. 11, 2553 (2016).

    Article  Google Scholar 

  40. N. Sarkar and S. Bose, Acta Biomater. 114, 407 (2020).

    Article  Google Scholar 

  41. L. Chen, C. Yan, and Z. Zheng, Mater. Today 21, 38 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Institute of Dental and Craniofacial Research (NIDCR) of the National Institutes of Health, Grant Number R01 DE029204-01 (PI: Bose), and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) of the National Institutes of Health under Grant Number R01 AR066361 (PI: Bose). The content is solely the authors’ responsibility and does not necessarily represent the National Institutes of Health’s official views.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Bose.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest or known competing financial interests/personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, S., Bhattacharjee, A., Huynh, C. et al. Allicin-Loaded Hydroxyapatite: Enhanced Release, Cytocompatibility, and Antibacterial Properties for Bone Tissue Engineering Applications. JOM 74, 3349–3356 (2022). https://doi.org/10.1007/s11837-022-05366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05366-1

Navigation