Skip to main content
Log in

Crystal Structure, Phase Stability, Microstructure, and Optical Properties of Transition Metal Incorporated Wide Band Gap Ga2O3

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of transition metal (TM) ion mixing on the crystal structure, surface morphology, microstructure, and optical properties of gallium oxide (Ga2O3) have been reported. The polycrystalline TM-mixed Ga2O3 (referred to TMGO; TM = Fe, Ti, W) materials were synthesized via a conventional, high-temperature solid-state chemical reaction method. The detailed investigation based on x-ray diffraction (XRD), scanning electron microscopy (SEM), and optical absorption measurements indicates the effect of Fe, Ti, and W incorporation on the structural and optical properties of Ga2O3. The marked difference in the mixing of various TM-ions (Fe3+, Ti4+, and W6+) is strongly reflected in the solubility limit of the respective TM-ions. For the constant amount of TM-ion alloying/mixing, no secondary phase formation occurs with Fe or W, while TiO2 secondary phase formation occurs for Ti. The optical band gap (~ 4.6 eV) of intrinsic Ga2O3 reduces significantly with Fe as compared to that of W and Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Sinha and A. Patra, Chem. Phys. Lett. 473, 151 (2009).

    Google Scholar 

  2. V. Zade, B. Mallesham, S. Shantha-Kumar, A. Bronson, and C.V. Ramana, lnorg. Chem. 58, 3707 (2019).

    Google Scholar 

  3. M. Higashiwaki, and G.H. Jessen, Appl. Phys. Lett. 112, 060401 (2018).

    Google Scholar 

  4. S.J. Pearton, J. Yang, P.H. CaryIV, F. Ren, J. Kim, M.J. Tadjer, and M.A. Mastro, Appl. Phys. Rev. 5, 011301 (2018).

    Google Scholar 

  5. S.B. Patil, I.Y. Kim, J.L. Gunjakar, S.M. Oh, T. Eom, H. Kim, S.-J. Hwang, and A.C.S. App, Mater. Interfaces 7, 18679 (2015).

    Google Scholar 

  6. Y. Usui, D. Nakauchi, N. Kawano, G. Okada, N. Kawaguchi, and T. Yanagida, J. Phys. Chem. Solids 117, 36 (2018).

    Google Scholar 

  7. M. Ogita, K. Higo, Y. Nakanishi, and Y. Hatanaka, Appl. Surf. Sci. 175, 721 (2001).

    Google Scholar 

  8. S. Ghose, S. Rahman, L. Hong, J.S. Rojas-Ramirez, H. Jin, K. Park, and R. Klie, J. Appl. Phys. 122, 095302 (2017).

    Google Scholar 

  9. S.E. Choi, Y.T. Oh, H.K. Ham, T.W. Kim, G.S. Heo, J.W. Park, B.H. Choi, and D.C. Shin, Curr. Appl. Phys. 11, S255 (2011).

    Google Scholar 

  10. X. Wang, F. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. Guo, J. Phys. Chem. Solids 75, 1201 (2014).

    Google Scholar 

  11. C. Ramana, Properties of sputter-deposited gallium oxide, in: Gallium Oxide, (Amersterdam: Elsevier, 2019) p 47.

  12. H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, Phys. Rev. B 74, 195123 (2006).

    Google Scholar 

  13. S.S. Kumar, E.J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C.V. Ramana, J. Phys. Chem. C 117, 4194 (2013).

    Google Scholar 

  14. W. Zhang, B.S. Naidu, J.Z. Ou, A.P. O’Mullane, A.F. Chrimes, B.J. Carey, Y. Wang, S.-Y. Tang, V. Sivan, A. Mitchell, and A.C.S. Appl, Mater. Interfaces 7, 1943 (2015).

    Google Scholar 

  15. J. Liu and G.K. Zhang, Mater. Res. Bull. 68, 254 (2015).

    Google Scholar 

  16. H. Sun, K.-H. Li, C.T. Castanedo, S. Okur, G.S. Tompa, T. Salagaj, S. Lopatin, A. Genovese, and X. Li, Cryst. Growth Des. 18, 2370 (2018).

    Google Scholar 

  17. Y. Chen, X. Xia, H. Liang, Q. Abbas, Y. Liu, and G. Du, Cryst. Growth Des. 18, 1147 (2018).

    Google Scholar 

  18. S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, and I. Tanaka, J. Phys. Condens. Matter 19, 346211 (2007).

    Google Scholar 

  19. J. Åhman, G. Svensson, and J. Albertsson, Acta Crystallogr. Sect. C 52, 1336 (1996).

    Google Scholar 

  20. M. Bartic, C.-I. Baban, H. Suzuki, M. Ogita, and M. Isai, J. Am. Ceram. Soc. 90, 2879 (2007).

    Google Scholar 

  21. H.Y. Playford, A.C. Hannon, E.R. Barney, and R.I. Walton, Chem. Eur. J. 19, 2803 (2013).

    Google Scholar 

  22. J.E. Swallow, C. Vorwerk, P. Mazzolini, P. Vogt, O. Bierwagen, A. Karg, M. Eickhoff, J. Schörmann, M.R. Wagner, and J.W. Roberts, Influence of Polymorphism on the Electronic Structure of Ga2O3, arXiv preprint arXiv: 2005.13395 (2020).

  23. H. Peelaers and C.G. Van de Walle, Phys. Status Solidi (B) 252, 828 (2015).

    Google Scholar 

  24. H.J. Lin, J.P. Baltrus, H.Y. Gao, Y. Ding, C.Y. Nam, P. Ohodnicki, P.X. Gao, and A.C.S. Appl, Mater. Interfaces 8, 8880 (2016).

    Google Scholar 

  25. G. Yang, S. Jang, F. Ren, S.J. Pearton, J. Kim, and I.C.S. Appl, Mater. Interfaces 9, 40471 (2017).

    Google Scholar 

  26. Y. Yao, R.F. Davis, and L.M. Porter, J. Electron. Mater. 46, 2053 (2017).

    Google Scholar 

  27. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Phys. Status Solidi (A) 211, 21 (2014).

    Google Scholar 

  28. S. Roy, B. Mallesham, V.B. Zade, A. Martinez, V. Shutthanandan, S. Thevuthasan, and C.V. Ramana, J. Phys. Chem. C 122, 27597 (2018).

    Google Scholar 

  29. V. Zade, B. Mallesham, S. Roy, V. Shutthanandan, and C. Ramana, ECS J. Solid State Sci. Technol. 8, Q3111 (2019).

    Google Scholar 

  30. H. Peelaers and C. Van de Walle, Phys. Rev. B 94, 195203 (2016).

    Google Scholar 

  31. C. Tang, J. Sun, N. Lin, Z. Jia, W. Mu, X. Tao, and X. Zhao, RSC Adv. 6, 78322 (2016).

    Google Scholar 

  32. E.G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, J. Cryst. Growth 270, 420 (2004).

    Google Scholar 

  33. X. Wang, S. Shen, S. Jin, J. Yang, M. Li, X. Wang, H. Han, and C. Li, PCCP 15, 19380 (2013).

    Google Scholar 

  34. Y. Zhang, J. Yan, Q. Li, C. Qu, L. Zhang, and W. Xie, Mater. Sci. Eng. B 176, 846 (2011).

    Google Scholar 

  35. H. Zhang, J. Deng, P. Duan, R. Li, Z. Pan, Z. Bai, L. Kong, and J. Wang, Vacuum 155, 465 (2018).

  36. A.A. Dakhel, J. Mater. Sci. 47, 3034 (2012).

    Google Scholar 

  37. E. Rubio, T. Mates, S. Manandhar, M. Nandasiri, V. Shutthanandan, and C. Ramana, J. Phys. Chem. C 120, 26720 (2016).

    Google Scholar 

  38. E.J. Rubio and C.V. Ramana, Appl. Phys. Lett. 102, 191913 (2013).

    Google Scholar 

  39. S. Manandhar, A.K. Battu, S. Tan, R. Panat, V. Shutthanandan, and C. Ramana, J. Mater. Sci. 54, 11526 (2019).

    Google Scholar 

  40. Y. Zhang, G. He, W. Wang, B. Yang, C. Zhang, and Y. Xia, J. Mater. Sci. Tech. https://doi.org/10.1016/j.jmst.2020.03.007 (2020).

    Article  Google Scholar 

  41. M. Bandi, V. Zade, S. Roy, A.N. Nair, S. Seacat, S. Sreenivasan, V. Shutthanandan, C.G. Van de Walle, H. Peelaers, and C.V. Ramana, Cryst. Growth Des. 20, 1422 (2020).

    Google Scholar 

  42. B. Mallesham, S. Roy, S. Bose, A.N. Nair, S. Sreenivasan, V. Shutthanandan, and C.V. Ramana, ACS Omega 5, 104 (2020).

    Google Scholar 

  43. J.F. Moulder, Handbook of x-ray Photoelectron Spectroscopy (Eden Prairie, Perkin-Elmer, 1995).

    Google Scholar 

  44. W. Li, S.Y. Qiu, N. Chen, and G.P. Du, J. Mater. Sci. Tech. 26, 682 (2010).

    Google Scholar 

  45. Y. Zhang, G. He, W. Wang, B. Yang, C. Zhang, and Y. Xia, J. Mater. Sci. Tech. 50, 1 (2020).

  46. J. Tauc, Mater. Res. Bull. 3, 37 (1968).

    Google Scholar 

  47. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi (B) 15, 627 (1966).

    Google Scholar 

  48. I. Ganesh, P.P. Kumar, A.K. Gupta, P.S. Sekhar, K. Radha, G. Padmanabham, and G. Sundararajan, Process App. Ceram. 6, 21 (2012).

    Google Scholar 

  49. H.D.S. Oliveira, A.C. Silva, J.P. de Mesquita, F.V. Pereira, D.Q. Lima, J.D. Fabris, F.C. Moura, and L.C. Oliveira, New J. Chem. 37, 2486 (2013).

    Google Scholar 

  50. A.H. Reshak, Z. Alahmed, J. Bila, V.V. Atuchin, B.G. Bazarov, O.D. Chimitova, M.S. Molokeev, I.P. Prosvirin, and A.P. Yelisseyev, J. Phys. Chem. C 120, 10559 (2016).

    Google Scholar 

  51. B. Nandan, B. Venugopal, S. Amirthapandian, B. Panigrahi, and P. Thangadurai, J. Nanopart. Res. 15, 1999 (2013).

    Google Scholar 

  52. K.A. Mengle, G. Shi, D. Bayerl, and E. Kioupakis, Appl. Phys. Lett. 109, 212104 (2016).

    Google Scholar 

  53. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, Jpn. J. Appl. Phys. 54, 112601 (2015).

    Google Scholar 

  54. S. Santhosh, M. Mathankumar, S. Selva Chandrasekaran, A. Nanda Kumar, P. Murugan, and B. Subramanian, Langmuir 33, 19 (2016).

    Google Scholar 

  55. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

    Google Scholar 

  56. H. Zhu, P. Zhou, X. Li, and J.-M. Liu, Phys. Lett. A 378, 2719 (2014).

    Google Scholar 

  57. A.O. Juma, E.A.A. Arbab, C.M. Muiva, L.M. Lepodise, and G.T. Mola, J. Alloys Compd. 723, 866 (2017).

    Google Scholar 

  58. D. Singh, B. Mallesham, A. Deshinge, K. Joshi, R. Ranjith, and V. Balakrishnan, Mater. Res. Express 5, 116303 (2018).

    Google Scholar 

  59. A.K. Battu, S. Manandhar, and C.V. Ramana, Mater. Today Nano 2, 7 (2018).

    Google Scholar 

  60. A.K. Battu, S. Manandhar, V. Shutthanandan, and C. Ramana, Chem. Phys. Lett. 684, 363 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge, with pleasure, support from the National Science Foundation (NSF) with NSF-PREM Grant #DMR-1827745.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Zade.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zade, V., Swadipta, R. & Ramana, C.V. Crystal Structure, Phase Stability, Microstructure, and Optical Properties of Transition Metal Incorporated Wide Band Gap Ga2O3. JOM 74, 79–86 (2022). https://doi.org/10.1007/s11837-021-05015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05015-z

Navigation