Skip to main content
Log in

Investigation on Three-Dimensional Morphology of Channel-Type Macrosegregation in DC Cast Al-Mg Billets Through Numerical Simulation

  • Advanced Casting and Melt Processing Technology for Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Channel-type segregation is one of the defects in aluminum casting technology, particularly in the direct chill (DC) process, having a significant influence on the cast quality. Nevertheless, the formation mechanism of three-dimensional (3D) channel-type segregations remains poorly understood. In order to clarify the formation mechanism of defects of this type, we conducted a 3D numerical simulation of the DC casting process of an Al-Mg alloy billet considering the melt flow, heat and mass transfer, solidification, and the motion of the solidified ingot, coupled with the alloy phase diagram. The simulation results showed that the channel-type segregations have strip-patterns and formed easily at high casting speeds, being localized at a distance of a half-radius from the billet centerline. We also compared two-dimensional axisymmetric and 3D simulations, and the results indicated that a two-dimensional axisymmetric simulation is incapable of properly predicting the behavior of channel-type segregations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.F. Emley, Int. Metals Rev. 21, 75. (2013).

    Google Scholar 

  2. M. Jolly, and L. Katgerman, Progr. Mater. Sci. 2021, 100824. (2021).

    Google Scholar 

  3. R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman, Progr. Mater. Sci. 53, 421. (2008).

    Article  Google Scholar 

  4. D.G. Eskin, J. Zuidema, V.I. Savran, and L. Katgerman, Mater. Sci. Eng. A 384, 232. (2004).

    Article  Google Scholar 

  5. D.G. Eskin, V.I. Savran, and L. Katgerman, Metall. Mater. Trans. A 36A, 1965. (2005).

    Article  Google Scholar 

  6. D. Eskin, R. Nadella, and L. Katgerman, Acta Mater. 56, 1358. (2008).

    Article  Google Scholar 

  7. S.R. Wagstaff, and A. Allanore, Metall. Mater. Trans. B 47, 3132. (2016).

    Article  Google Scholar 

  8. H.-T. Li, P. Zhao, R. Yang, J.B. Patel, X. Chen, and Z. Fan, Metall. Mater. Trans. B 48, 2481. (2017).

    Article  Google Scholar 

  9. A.V. Reddy, and C. Beckermann, Metall. Mater. Trans. B 28B, 479. (1997).

    Article  Google Scholar 

  10. H.J. Thevik, A. Mo, and T. Rusten, Metall. Mater. Trans. B 30B, 135. (1999).

    Article  Google Scholar 

  11. C.J. Vreeman, M.J.M. Krane, and F.P. Incropera, Int. J. Heat Mass Transf. 43, 677. (2000).

    Article  Google Scholar 

  12. B.C.H. Venneker, and L. Katgerman, J. Light Metals 2, 149. (2002).

    Article  Google Scholar 

  13. K. Fezi, A. Plotkowski, and M.J.M. Krane, Numer. Heat Transf. A Appl. 70, 939. (2016).

    Article  Google Scholar 

  14. L. Heyvaert, M. Bedel, M. Založnik, and H. Combeau, Metall. Mater. Trans. A 48, 4713. (2017).

    Article  Google Scholar 

  15. K.O. Tveito, A. Pakanati, M. M’Hamdi, H. Combeau, and M. Založnik, Metall. Mater. Trans. A 49, 2778. (2018).

    Article  Google Scholar 

  16. C.J. Vreeman, and F.P. Incropera, Int. J. Heat Mass Transf. 43, 687. (2000).

    Article  Google Scholar 

  17. C.J. Vreeman, J.D. Schloz, and M.J.M. Krane, J. Heat Transf. 124, 947. (2002).

    Article  Google Scholar 

  18. M. Založnik, B. Šarler, and D. Gobin, Mater. Tehnol. 38, 249. (2004).

    Google Scholar 

  19. M. Založnik, and B. Šarler, Mater. Sci. Eng. A 413, 85–91. (2005).

    Article  Google Scholar 

  20. M. Založnik, A. Kumar, H. Combeau, M. Bedel, P. Jarry, and E. Waz, Adv. Eng. Mater. 13, 570. (2011).

    Article  Google Scholar 

  21. D.G. Eskin, Q. Du, and L. Katgerman, Metall. Mater. Trans. A 39, 1206. (2008).

    Article  Google Scholar 

  22. A. Pakanati, M. M’Hamdi, H. Combeau, and M. Založnik, Metall. Mater. Trans. A 49, 4710. (2018).

    Article  Google Scholar 

  23. A. Pakanati, K.O. Tveito, M. M’Hamdi, H. Combeau, and M. Založnik, Metall. Mater. Trans. A 50, 1773. (2019).

    Article  Google Scholar 

  24. A. Pakanati, M. M’Hamdi, H. Combeau, and M. Založnik, IOP Conferemce Series: Materials Science and Engineering 861, 012040 (2020).

  25. K. Fezi, and M.J.M. Krane, Int. J. Cast Metals Res. 30, 191. (2017).

    Article  Google Scholar 

  26. J. Coleman, and M.J.M. Krane, Mater. Sci. Technol. 36, 393. (2020).

    Article  Google Scholar 

  27. G.S.B. Lebon, G. Salloum-Abou-Jaoude, D. Eskin, I. Tzanakis, K. Pericleous, and P. Jarry, Ultrason. Sonochem. 54, 171. (2019).

    Article  Google Scholar 

  28. G.S.B. Lebon, H.-T. Li, J.B. Patel, H. Assadi, and Z. Fan, Appl. Math. Model. 77, 1310. (2020).

    Article  MathSciNet  Google Scholar 

  29. T. Yamamoto, K. Kamiya, K. Fukawa, S. Yomogida, T. Kubo, M. Tsunekawa and S. Komarov, Metallurgical and Materials Transactions B. https://doi.org/10.1007/s11663-021-02320-5

  30. A. Plotkowski, and M.M. Krane, Comput. Mater. Sci. 124, 238. (2016).

    Article  Google Scholar 

  31. D.M. Stefanescu, Science and engineering of casting solidification (Springer, New York, 2008).

    Google Scholar 

  32. F. Rösler, and D. Brüggemann, Heat Mass Transf. 47, 1027. (2011).

    Article  Google Scholar 

  33. C. Prakash, and V.R. Voller, Numer. Heat Transf. B Fundam. 15, 171. (1989).

    Article  Google Scholar 

  34. T. Yamamoto, H. Mirsandi, X. Jin, Y. Takagi, Y. Okano, Y. Inatomi, Y. Hayakawa, and S. Dost, Numer. Heat Transf. B Fundam. 70, 441. (2016).

    Article  Google Scholar 

  35. D.C. Weckman, and P. Niessen, Metall. Trans. B 13B, 593. (1982).

    Article  Google Scholar 

  36. S. Komarov, and T. Yamamoto, Materials (Basel) 12, 3532. (2019).

    Article  Google Scholar 

  37. T. Yamamoto, and S.V. Komarov, J. Mater. Process. Technol. 294, 117116. (2021).

    Article  Google Scholar 

  38. Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F.Y. Xie, Mater. Sci. Eng. A 363, 140. (2003).

    Article  Google Scholar 

  39. M. Leitner, T. Leitner, A. Schmon, K. Aziz, and G. Pottlacher, Metall. Mater. Trans. A 48, 3036. (2017).

    Article  Google Scholar 

  40. R.I. Issa, J. Comput. Phys. 62, 40. (1985).

    Article  Google Scholar 

  41. M. Bellet, H. Combeau, Y. Fautrelle, D. Gobin, M. Rady, E. Arquis, O. Budenkova, B. Dussoubs, Y. Duterrail, A. Kumar, C.A. Gandin, B. Goyeau, S. Mosbah, and M. Založnik, Int. J. Therm. Sci. 48, 2013. (2009).

    Article  Google Scholar 

  42. H. Combeau, M. Bellet, Y. Fautrelle, D. Gobin, E. Arquis, O. Budenkova, B. Dussoubs, Y. Du Terrail, A. Kumar, C.A. Gandin, B. Goyeau, S. Mosbah, T. Quatravaux, M. Rady, and M. Založnik, IOP Conference Series: Materials Science and Engineering 33, 012086 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Yamamoto.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Numerical model for thermodynamic relationship

The thermodynamic relationship was coupled with the governing equations through the numerical model proposed by Prakash and Voller.33 Through a linearized phase diagram, the mass fraction of liquid, fl, was calculated as:

$${f}_{l}=1-\frac{1}{1-{k}_{p}}\frac{T-{T}_{liq}}{T-{T}_{m}}$$
(A1)

where kp is the partition coefficient, Tm the melting temperature of pure aluminum, and Tliq the liquidus temperature, which is described as:

$${T}_{\mathrm{liq}}={T}_{m}+\left({T}_{e}-{T}_{m}\right)\frac{C}{{C}_{e}}$$
(A2)

where Te is the eutectic temperature, and Ce the eutectic concentration. By rearranging Eq. A1, the following equation can be obtained:

$$T=F\left({f}_{l},C\right)=\frac{{T}_{liq}-\left(1-{f}_{l}\right)\left(1-{k}_{p}\right){T}_{m}}{1-(1-{f}_{l})(1-{k}_{p})}$$
(A3)

A dependence of enthalpy on the liquid fraction can be given as:

$$h={c}_{p}T+{f}_{l}L$$
(A4)

where L is the latent heat. The discretized governing equations and thermodynamic relationship were coupled by using Eq. A3 and (A4) through outer iterations. By substituting Eq. A3 into Eq. A4, the following equation can be obtained at the n-th outer step:

$${c}_{p}F\left({f}_{l}^{n+1},{C}^{n}\right)+{f}_{l}^{n+1}L ={c}_{p}{T}^{n}+{f}_{l}^{n}L$$
(A5)

Finally, Eq. A5 can be transformed into the following:

$$a{\left({f}_{l}^{n+1}\right)}^{2}+b\left({f}_{l}^{n+1}\right)+d=0$$
(A6)

where a, b, and d are coefficients of the quadratic equation, which are described as:

$$a=1-{k}_{p}$$
(A7)
$$b={k}_{p}-{f}_{l}^{n}\left(1-{k}_{p}\right)+\frac{{c}_{p}}{L}\left(1-{k}_{p}\right)({T}_{m}-{T}^{n})$$
(A8)
$$d=-\left({f}_{l}^{n}+\frac{{c}_{p}}{L}{T}^{n}\right){k}_{p}+\frac{{c}_{p}}{L}\left[{T}_{liq}^{n}-\left(1-{k}_{p}\right){T}_{m}\right]$$
(A9)

Finally, the mass fraction at the n-th outer step was calculated as:

$${f}_{l}^{n+1}=\text{min}\left(\text{max}\left(0, \frac{-b+\sqrt{{b}^{2}-4ad}}{2a}\right),1\right)$$
(A10)

During the outer iterations, liquidus and solidus concentration and the physical properties were updated. By the outer iterations, the mass fraction was converged to a certain value. In this simulation, the convergence criterion of mass fraction was set to 1 × 10−6. The average number of outer iterations was approximately 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, T., Kamiya, K., Kubo, T. et al. Investigation on Three-Dimensional Morphology of Channel-Type Macrosegregation in DC Cast Al-Mg Billets Through Numerical Simulation. JOM 73, 3838–3847 (2021). https://doi.org/10.1007/s11837-021-04906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04906-5

Navigation