Skip to main content
Log in

An EBSD Study on the Stability of Retained Austenite in Low-Si TRIP Steels During Uniaxial Tension

  • Advanced High-Strength Steels
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Two transformation-induced plasticity steels, with and without Nb–Ti additions, were subjected to uniaxial tension after simulated thermo-mechanical processing. Electron back-scattering diffraction, with phase segmentation implemented during post-processing, was used to investigate the stability of retained austenite (RA) by analyzing its size, morphology, and neighboring phases. The rate of RA transformation to martensite was higher in the Nb–Ti-containing steel than in the base steel as most RA was co-located between bainitic ferrite with parallel arrangement of laths in the former steel. Depending on the location of RA and the developed stress state, its stability in tension declines in the following order: RA in bainite > RA at polygonal ferrite/bainite interfaces > RA embedded in polygonal ferrite grains and at polygonal ferrite triple junctions or grain boundaries. Fine grains of RA may be less stable than their coarser counterparts if they are located in unfavorable stress regions of the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

adopted from Ref. 50 with permission from Elsevier, Copyright 2014 (Color figure online).

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In theory, the normalized area fraction of martensite at fracture should be approximately equal to the sum of the normalized area fractions of RA and martensite at 0 strain. However, the above logic holds true only when the same area is tracked at different strains. It is reemphasised that this is not the case in the present study.

References

  1. O. Matsumura, Y. Sakuma, and H. Takechi, Scr. Metall. 21, 1301 (1987).

    Article  Google Scholar 

  2. Y. Sakuma, D.K. Matlock, and G. Krauss, J. Heat Treat. 8, 109 (1990).

    Article  Google Scholar 

  3. B.C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8, 285 (2004).

    Article  Google Scholar 

  4. P.J. Jacques, F. Delannay, and J. Ladrière, Metall. Mater. Trans. A 32A, 2759 (2001).

    Article  Google Scholar 

  5. M.D. Meyer, D. Vanderschueren, and B.C.D. Cooman, ISIJ Int. 39, 813 (1999).

    Article  Google Scholar 

  6. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Metall. Mater. Trans. A 35A, 2331 (2004).

    Article  Google Scholar 

  7. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Scr. Mater. 56, 421 (2007).

    Article  Google Scholar 

  8. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, Scr. Mater. 68, 321 (2013).

    Article  Google Scholar 

  9. A. Itami, M. Takahashi, and K. Ushioda, ISIJ Int. 35, 1121 (1995).

    Article  Google Scholar 

  10. E. Pereloma, A. Gazder, I. Timokhina, Encyclopedia of Iron, Steel, and Their Alloys, ed. R. Colas and G.E. Totten (New York: CRC Press, 2015) p. 3088.

  11. B. He, Materials 13, 3440 (2020).

    Article  Google Scholar 

  12. I. Timokhina, H. Beladi, X.-Y. Xiong, Y. Adachi, and P. Hodgson, Acta Mater. 59, 5511 (2011).

    Article  Google Scholar 

  13. Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw, and D. Raabe, Mater. Sci. Eng. A 636, 551 (2015).

    Article  Google Scholar 

  14. A. Grajcar, A. Kilarski, and A. Kozlowska, Metals 8, 929 (2018).

    Article  Google Scholar 

  15. S. Lee, S.-J. Lee, and B.C. De Cooman, Scr. Mater. 66, 832 (2012).

    Article  Google Scholar 

  16. Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying, Acta Mater. 84, 229 (2015).

    Article  Google Scholar 

  17. A. Kammouni, W. Saikaly, M. Dumont, C. Marteau, X. Bano, and A. Charaï, Mater. Sci. Eng. A 518, 89 (2009).

    Article  Google Scholar 

  18. R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. van der Zwaag, and N.H. van Dijk, Acta Mater. 60, 565 (2012).

    Article  Google Scholar 

  19. F.G. Caballero, C. GarcíA-Mateo, J. Chao, M.J. Santofimia, C. Capdevila, and C.G. De Andres, ISIJ Int. 48, 1256 (2008).

    Article  Google Scholar 

  20. S. Kruijver, L. Zhao, J. Sietsma, S. Offerman, N. van Dijk, E. Lauridsen, L. Margulies, S. Grigull, H. Poulsen, S. van der Zwaag, J. de Phys. IV, EDP Sciences, 499 (2003).

  21. G.K. Tirumalasetty, M.A. van Huis, C. Kwakernaak, J. Sietsma, W.G. Sloof, and H.W. Zandbergen, Acta Mater. 60, 1311 (2012).

    Article  Google Scholar 

  22. W.S. Li, H.Y. Gao, H. Nakashima, S. Hata, and W.H. Tian, Mater. Sci. Eng. A 649, 417 (2016).

    Article  Google Scholar 

  23. D. De Knijf, T. Nguyen-Minh, R.H. Petrov, L.A.I. Kestens, and J.J. Jonas, J. Appl. Cryst. 47, 1261 (2014).

    Article  Google Scholar 

  24. E.V. Pereloma, A.A. Gazder, I.B. Timokhina, Mater. Sci. Forum, 212 (2013).

  25. W.-S. Li, H.-Y. Gao, H. Nakashima, S. Hata, and W.-H. Tian, Mater. Charact. 118, 431 (2016).

    Article  Google Scholar 

  26. G. Reisner, E. Werner, P. Kerschbaummayr, I. Papst, and F. Fischer, JOM 49, 62 (1997).

    Article  Google Scholar 

  27. P.J. Jacques, Q. Furnémont, F. Lani, T. Pardoen, and F. Delannay, Acta Mater. 55, 3681 (2007).

    Article  Google Scholar 

  28. H. Kim, J. Lee, F. Barlat, D. Kim, and M.-G. Lee, Acta Mater. 97, 435 (2015).

    Article  Google Scholar 

  29. S. Zajac, J. Komenda, P. Morris, P. Dierickx, S. Matera, F. Penalba Diaz, Technical Steel Research Report, EUR 21245EN. European Commission, Luxembourg, (2005).

  30. C.P. Scott, and J. Drillet, Scr. Mater. 56, 489 (2007).

    Article  Google Scholar 

  31. Z. Xiong, A. Saleh, R. Marceau, A. Taylor, N. Stanford, A. Kostryzhev, and E. Pereloma, Acta Mater. 134, 1 (2017).

    Article  Google Scholar 

  32. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Acta Mater. 53, 5439 (2005).

    Article  Google Scholar 

  33. E. Pereloma, I.B. Timokhina, M.K. Miller, and P.D. Hodgson, Acta Mater. 55, 2587 (2007).

    Article  Google Scholar 

  34. I.B. Timokhina, E.V. Pereloma, S.P. Ringer, R.K. Zheng, and P.D. Hodgson, ISIJ Int. 50, 574 (2010).

    Article  Google Scholar 

  35. G. Tirumalasetty, M. Van Huis, C. Kwakernaak, J. Sietsma, W. Sloof, and H. Zandbergen, Scr. Mater. 71, 29 (2014).

    Article  Google Scholar 

  36. S. Lee, S.-J. Lee, and B.C. De Cooman, Scr. Mater. 65, 225 (2011).

    Article  Google Scholar 

  37. Z. Xiong, G. Casillas, A.A. Saleh, S. Cui, and E.V. Pereloma, Sci. Rep. 7, 17397 (2017).

    Article  Google Scholar 

  38. D. De Knijf, C. Föjer, L.A.I. Kestens, and R. Petrov, Mater. Sci. Eng. A 638, 219 (2015).

    Article  Google Scholar 

  39. K. Sugimoto, M. Misu, M. Kobayashi, and H. Shirasawa, ISIJ Int. 33, 775 (1993).

    Article  Google Scholar 

  40. J. Chiang, J.D. Boyd, and A.K. Pilkey, Mater. Sci. Eng. A 638, 132 (2015).

    Article  Google Scholar 

  41. H.S. Park, J.C. Han, N.S. Lim, J.-B. Seol, and C.G. Park, Mater. Sci. Eng. A 627, 262 (2015).

    Article  Google Scholar 

  42. K.K. Park, S.T. Oh, S.M. Baeck, D.I. Kim, J.H. Han, H.N. Han, S.-H. Park, C.G. Lee, S.-J. Kim, and K.H. Oh, Mater. Sci. Forum 408–412, 571 (2002).

    Article  Google Scholar 

  43. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, and Y. Morii, Acta Mater. 52, 5737 (2004).

    Article  Google Scholar 

  44. T.N. Lomholt, Y. Adachi, A. Bastos, K. Pantleon, and M.A. Somers, Mater. Sci. Techn. 29, 1383 (2013).

    Article  Google Scholar 

  45. S. Zhang, and K. Findley, Acta Mater. 61, 1895 (2013).

    Article  Google Scholar 

  46. R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert, Mater. Sci. Eng. A 447, 285 (2007).

    Article  Google Scholar 

  47. F. Alharbi, A.A. Gazder, A. Kostryzhev, B.C. De Cooman, and E.V. Pereloma, J. Mater. Sci. 49, 2960 (2014).

    Article  Google Scholar 

  48. A.A. Gazder, F. Al-Harbi, H.T. Spanke, D.R.G. Mitchell, and E.V. Pereloma, Ultramicroscopy 147, 114 (2014).

    Article  Google Scholar 

  49. A.A. Gazder, M. Sanchez-Araiza, J.J. Jonas, and E.V. Pereloma, Acta Mater. 59, 4847 (2011).

    Article  Google Scholar 

  50. E.V. Pereloma, F. Al-Harbi, and A.A. Gazder, J. Alloys Compd. 615, 96 (2014).

    Article  Google Scholar 

  51. M. Kamaya, Mater. Charact. 60, 125 (2009).

    Article  Google Scholar 

  52. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010).

    Article  Google Scholar 

  53. J.H. Ryu, D.-I. Kim, H.S. Kim, H.K.D.H. Bhadeshia, and D.-W. Suh, Scr. Mater. 63, 297 (2010).

    Article  Google Scholar 

  54. Q. Furnemont, G. Lacroix, S. Godet, K.T. Conlon, and P.J. Jacques, Can. Metall. Q. 43(1), 35–42 (2004).

    Article  Google Scholar 

  55. J. Jung, H. Kim, and B. De Cooman, ISIJ Int. 50, 620 (2010).

    Article  Google Scholar 

  56. S. Wronski, J. Tarasiuk, B. Bacroix, A. Baczmanski, and C. Braham, Mater. Charact. 73, 52 (2012).

    Article  Google Scholar 

  57. K. Yan, K.-D. Liss, I.B. Timokhina, and E.V. Pereloma, Mater. Sci. Eng. A 662, 185 (2016).

    Article  Google Scholar 

  58. E. Jimenez-Melero, N. Van Dijk, L. Zhao, J. Sietsma, S. Offerman, J. Wright, and S. Van der Zwaag, Acta Mater. 55, 6713 (2007).

    Article  Google Scholar 

  59. S.V. Radcliffe, and M. Schatz, Acta Metall. 10, 201 (1962).

    Article  Google Scholar 

  60. I. Tsukatani, S. Hashimoto, and T. Inoue, ISIJ Int. 31, 992 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to POSCO and Profs. H. Kim and B.C. De Cooman, GIFT-POSTECH, for providing the steels. The EBSD work was undertaken on a JEOL JSM-7001F FEG-SEM funded by the Australian Research Council-Linkage, Infrastructure, Equipment and Facilities Grant LE0882613. The Oxford Instruments 80 mm2 X-Max EDS detector was funded via the 2012 UOW Major Equipment Grant scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Pereloma.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Harbi, F., Gazder, A.A. & Pereloma, E. An EBSD Study on the Stability of Retained Austenite in Low-Si TRIP Steels During Uniaxial Tension. JOM 73, 3169–3180 (2021). https://doi.org/10.1007/s11837-021-04880-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04880-y

Navigation