Skip to main content

Advertisement

Log in

Mode Coupling Analysis of Interfacial Stability and Critical Anode–Cathode Distance in a 500-kA Aluminum Electrolysis Cell

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The quantitative description and theoretical research on the stability of the electromagnetic field interfacial wave in aluminum electrolysis cells are the key to achieving high energy efficiency and operational safety. The magneto-hydrodynamics equations were established based on the theory of electromagnetics and hydrodynamics and applied to a 500-kA cell. The Fourier series expansion and finite element methods were used for modeling and simulation of interfacial stability. Detailed analysis was conducted on wave mode coupling regimes by custom code in MATLAB. Based on the characteristics of total modulus, a modal analysis method was proposed to clarify how anode–cathode distance (ACD) and length-width ratio of cells affected interfacial stability. The results indicate that the stability is enhanced as the increase of ACD for a 500-kA electrolysis cell and the critical ACD is derived as 0.041 m, which is preferable for stabilizing the cell and reducing energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Gupta and B. Basu, Trans. Indian Inst. Met. 72, 2135 (2019).

    Article  Google Scholar 

  2. Y. Yang, Y.Q. Guo, W.S. Zhu, and J.B. Huang, Trans. Nonferrous Met. Soc. China 29, 1784 (2019).

    Article  Google Scholar 

  3. W. Liu, D.F. Zhou, and Z.B. Zhao, JOM 71, 2420 (2019).

    Article  Google Scholar 

  4. B. Bardet, T. Foetisch, S. Renaudier, J. Rappaz, M. Flueck, and M. Picasso, in Light Metals 2016 (TMS, Warrendale, 2016), pp 315–319.

  5. W. Herreman, C. Nore, J.-L. Guermond, L. Cappanera, N. Weber, and G.M. Horstmann, J. Fluid Mech. 122, 598 (2019).

    Article  Google Scholar 

  6. T. Sele, Metall. Trans. B 8, 613 (1977).

    Article  Google Scholar 

  7. N. Urata, K. Mori, and H. Ikeuchi, J. Jpn. Inst. Light Met. 26, 573 (1976).

    Article  Google Scholar 

  8. N. Urata, in Light Metals 1985 (TMS, Warrendale, 1985), pp 581–591.

  9. A.D. Sneyd, J. Fluid Mech. 156, 223 (1985).

    Article  Google Scholar 

  10. P.A. Davidson, and R.I. Lindsay, in Light Metals 1997 (TMS, Warrendale, 1997), pp 437–442.

  11. O. Zikanov, A. Thess, P.A. Davidson, and D.P. Ziegler, Metall. Mater. Trans. B 31, 1541 (2000).

    Article  Google Scholar 

  12. T. Weyens, J.M. Reynolds-Barredo, and A. Loarte, Comput. Phys. Commun. 242, 60 (2019).

    Article  MathSciNet  Google Scholar 

  13. J.L. Ding, J. Li, H.L. Zhang, Y.J. Xu, S. Yang, and Y.X. Liu, Cent. South Univ. 21, 4097 (2014).

    Article  Google Scholar 

  14. M. Dupuis and M. Page, in Light Metals 2016 (TMS, Warrendale, 2016), pp 909–914.

  15. M. Dupuis and M. Page, in Light Metals 2016 (TMS, Warrendale, 2016), pp 58–62.

  16. V. Bojarevics and M. Romerio, Eur. J. Mech. B 13, 33 (1994).

    Google Scholar 

  17. V. Bojarevics and S. Sira, in Light Metals 2014 (TMS, Warrendale, 2014), pp 685–690.

  18. V. Bojarevics and K. Pericleous, in Light Metals 2006 (TMS, Warrendale, 2006), pp 347–352.

  19. V. Bojarevics, in Light Metals 2013 (TMS, TMS, Warrendale, 2013), pp 609–614.

  20. V. Bojarevics and A. Tucs, in Light Metals 2017 (TMS, Warrendale, 2013), pp 677–686.

  21. V. Bojarevics and M. Dupuis, in Light Metals 2021 (TMS, Warrendale, 2021), pp 565–571.

  22. M. Dupuis and V. Bojarevics, in Light Metals 2020 (TMS, Warrendale, 2020), pp 495–509.

  23. H.J. Sun, O. Zikanov, and D.P. Ziegler, Fluid Dyn. Res. 35, 255 (2004).

    Article  Google Scholar 

  24. M. Kadkhodabeigi and Y. Saboohi, in Light Metals 2007 (TMS, Warrendale, 2007), pp 345–351.

  25. S. Molokov, G. El, and A. Lukyanov, Theor. Comput. Fluid Dyn. 122, 6 (2019).

    Google Scholar 

  26. S. Molokov, Europhys. Lett. 121, 44001 (2018).

    Article  Google Scholar 

  27. A. Pedcenko, S. Molokov, and B. Bardet, Metall. Mater. Trans. B 48, 6 (2017).

    Article  Google Scholar 

  28. S.Y. Ruan, F.Y. Van, M. Dupuis, V. Bojarevics, and J.F. Zhou, in Light Metals 2013 (TMS, Warrendale, 2013), pp 603–607.

  29. Y. Yang, S.H. Yao, and X.B. Yi, in Light Metals 2014 (TMS, Warrendale, 2014), pp 703–708.

  30. B.K. Li, F. Wang, X.B. Zhang, F.S. Qi, and N.X. Feng, in AIP Conference Proceedings ( American Institute of Physics, Melville, 2012), pp 865–868.

  31. Q. Wang, B.K. Li, F. Wang, and N.X. Feng, in Light Metals 2013 (TMS, Warrendale, 2013), pp 615–619.

  32. Y.F. Tian, Nonferrous Met. 25, 23 (2009).

    Google Scholar 

  33. Y.F. Tian, Light Met. 2, 31 (2011).

    Google Scholar 

  34. Y.J. Xu, J. Li, H.L. Zhang, and Y.Q. Lai, Chin. J. Nonferrous Met. 21, 191 (2011).

    Article  Google Scholar 

  35. H.L. Zhang, J. Li, Z.G. Wang, Y.J. Xu, and Y.Q. Lai, JOM 62, 26 (2010).

    Article  Google Scholar 

  36. X.J. Lu, H.X. Zhang, Z.X. Han, K.J. Wang, C.H. Guan, Q.D. Sun, W.W. Wang, and M.R. Wei, Trans. Nonferrous Met. Soc. China 30, 1124 (2020).

    Article  Google Scholar 

  37. J.S. Hua, M. Rudshaug, C. Droste, and R. Jorgensen, Metall. Mater. Trans. B 49, 1246 (2018).

    Article  Google Scholar 

  38. A. Tucs, V. Bojarevics, and K. Pericleous, J. Fluid Mech. 852, 453 (2018).

    Article  MathSciNet  Google Scholar 

  39. A. Tucs, V. Bojarevics, and K. Pericleous, Europhys. Lett. 124, 24001 (2018).

    Article  Google Scholar 

  40. N. Weber, P. Beckstein, W. Herreman, G.M. Horstmann, C. Nore, F. Stefani, and T. Weier, Phys. Fluids 29, 54101 (2017).

    Article  Google Scholar 

  41. G.M. Horstmann, N. Weber, and T. Weier, J. Fluid Mech. 845, 1 (2018).

    Article  MathSciNet  Google Scholar 

  42. O. Zikanov, Theor. Comput. Fluid Dyn. 32, 325 (2018).

    Article  MathSciNet  Google Scholar 

  43. M. Segatz and C. Droste, in EMC 2001: European Metallurgical Conference (GDMB, Clausthal-Zellerfeld, 2001), pp. 117–128.

  44. N. Urata, in Light Metals 2005 (TMS, Warrendale, 2005), pp 455–460.

  45. H.S. Li, W.Y. Hou, and Q.H. Li (Central South University, Changsha, 2019).

Download references

Acknowledgements

This research was funded by the High Technology Research and Development Program of China (2010AA065201), the Fundamental Research Funds for the Central Universities of Central South University (2018zzts157, 2021zzts0668). The authors also thank the anonymous referees for valuable comments and useful suggestions that helped us to improve the quality of present and future work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenyuan Hou or Benjun Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 414 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Ma, S., Li, H. et al. Mode Coupling Analysis of Interfacial Stability and Critical Anode–Cathode Distance in a 500-kA Aluminum Electrolysis Cell. JOM 73, 2741–2751 (2021). https://doi.org/10.1007/s11837-021-04799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04799-4

Navigation