Skip to main content
Log in

The numerical modeling of melt flow and MHD instabilities in an aluminum reduction cell

  • Aluminum / Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The melt flow field and magneto-hydrodynamics (MHD) instabilities in aluminum reduction cells strongly affect the current efficiency and cell operation and a great deal of effort has gone into modeling melt flow and MHD instabilities. In this review, the progress of melt flow is presented: the successes and defects of modeling melt flow via k-ɛ model, Navier-Stokes equations due to different driving forces of electromagnetic forces, gas bubbles, and the combined effect of these driving forces are discussed. A new three-dimensional (3-D) multi-phase (electrolyte-aluminum-bubble) model needs to be developed. In MHD instabilities, several different published methods are reviewed such as: two-dimensional/3-D linear model, Kelvin-Helmholtz (K-H) model, linear mode coupling model, nonlinear instabilities and velocity coupling model. The benefits, limitations, and effectiveness of each type of model are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D. Tarapore, Light Metals 1979, ed. W.S. Peterson (Warrendale, PA: TMS, 1979), pp. 541–550.

    Google Scholar 

  2. J.M. Blanc and H. Ikeuchi, Light Metals 1980, ed. C.J. McMinn (Warrendale, PA: TMS, 1980), pp. 285–295.

    Google Scholar 

  3. Y. Arita, Light Metals 1981, ed. G.M. Bell (Warrendale, PA: TMS, 1981), pp. 357–371.

    Google Scholar 

  4. R.F. Robl, Light Metals 1983, ed. E.M. Adkins (Warrendale, PA: TMS, 1983), pp. 449–456.

    Google Scholar 

  5. D.K. Ai, Light Metals 1985, ed. H.O. Bohner (Warrendale, PA: TMS, 1985), pp. 593–607.

    Google Scholar 

  6. W.E. Wahnsiedler, Light Metals 1987, ed. R.D. Zabreznik (Warrendale, PA: TMS, 1987), pp. 269–287.

    Google Scholar 

  7. V. Potocnik and F. Laroche, Light Metals 2001, ed. J.L. Anjier (Warrendale, PA: TMS, 1981), pp. 419–425.

    Google Scholar 

  8. D.S. Severo et al., Light Metals 2005, ed. H. Kvande (Warrendale, PA: TMS, 1985), pp. 475–480.

    Google Scholar 

  9. Z.L. Huang et al., Chinese Journal of Computational Physics, 11(2) (1994), pp. 179–184. (in Chinese)

    Google Scholar 

  10. J. K. Wu et al., The Chinese Journal of Nonferrous Metals, 13(1) (2003), pp. 241–244. (in Chinese)

    CAS  ADS  Google Scholar 

  11. P. Zhou et al., Acta Metallurgica Sinica, 40(1) (2004), pp. 77–82. (in Chinese)

    CAS  Google Scholar 

  12. C.W. Jiang et al., Chinese Journal of Computational Physics, 23(6) (2006), pp. 665–672. (in Chinese)

    Google Scholar 

  13. M. Li et al., The Chinese Journal of Process Engineering, 7(2) (2007), pp. 354–359. (in Chinese)

    CAS  Google Scholar 

  14. W. Liu et al., The Chinese Journal of Nonferrous Metals, 18(5) (2008), pp. 909–916. (in Chinese)

    CAS  Google Scholar 

  15. A. Solheim et al., Light Metals 1989, ed. P.G. Campbell (Warrendale, PA: TMS, 1989), pp. 245–252.

    Google Scholar 

  16. S. Fortin et al., Light Metals 1984, ed. J.P. McGeer (Warrendale, PA: TMS, 1984), pp. 721–741.

    Google Scholar 

  17. R. Shekhar et al., Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 25(3) (1994), pp. 333–340.

    Article  Google Scholar 

  18. R. Shekhar et al., Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 25(3) (1994), pp. 341–349.

    Article  Google Scholar 

  19. A. Solheim and J. Thonstad, Light Metals 1987, ed. R.D. Zabreznik (Warrendale, PA: TMS, 1987), pp. 239–245

    Google Scholar 

  20. A. Perron et al., in Ref. 8, pp. 565–570.

    Google Scholar 

  21. W. Yang and M.A. Cooksey, Light Metals 2007, ed. M. Sørlie (Warrendale, PA: TMS, 1987), pp. 451–456.

    Google Scholar 

  22. A. Solheim et al., in Ref. 15, pp. 245–252.

    Google Scholar 

  23. J.M. Purdie et al., Light Metals 1993, ed. S.K. Das (Warrendale, PA: TMS, 1993), pp. 355–360.

    Google Scholar 

  24. S. Poncsák et al., Light Metals 2006, ed. T.J. Galloway (Warrendale, PA: TMS, 2006), pp. 457–462.

    Google Scholar 

  25. L.I. Kiss et al., in Ref. 21, pp. 495–500.

    Google Scholar 

  26. Y.Q. Feng et al., in Ref. 21, pp. 339–344.

    Google Scholar 

  27. X.P. Li et al., Transactions of Nonferrous Metals Society of China, 4(6) (2004), pp. 1221–1226.

    Google Scholar 

  28. M.A. Doheim et al., Metallurgical and Materials Transactions B, 38(1) (2007), pp. 113–119.

    Article  Google Scholar 

  29. X.X. Xia et al., The Chinese Journal of Nonferrous Metals, 16(11) (2006), pp. 1988–1992. (in Chinese)

    CAS  Google Scholar 

  30. N. Urata, Light Metals 1985, ed. H.O. Bohner (Warrendale, PA: TMS, 1985), pp. 581–591.

    Google Scholar 

  31. N. Urata et al., Light Metals 1976, ed. S.R. Leavitt (Warrendale, PA: TMS, 1976), pp. 573–583.

    Google Scholar 

  32. A. Kurenkov et al., Magnetohydrodynamics, 40(2) (2004), pp. 3–13.

    Google Scholar 

  33. A.D. Sneyd et al., J. Fluid Mech., 263 (1994), pp. 343–359.

    Article  MATH  ADS  Google Scholar 

  34. N. Urata, Light Metals 1985, ed. H.O. Bohner (Warrendale, PA: TMS, 1985), pp. 581–591.

    Google Scholar 

  35. J.K. Wu et al., Light Metals 2002, ed. W. Schneider (Warrendale, PA: TMS, 2002), pp. 511–514.

    Google Scholar 

  36. H.S. Li (Ph.D. thesis, Central South University, Changsha, China, 2006) (in Chinese).

  37. V. Bojarevics and K. Pericleous, Light Metals 2006, ed. T.J. Galloway (Warrendale, PA: TMS, 2006), pp. 347–352.

    Google Scholar 

  38. V. Potocnik, in Ref. 15, pp. 227–235.

    Google Scholar 

  39. M. Segatz and C. Droste, Light Metals 1994, ed. U. Mannweiler (Warrendale, PA: TMS, 1994), pp. 313–322.

    Google Scholar 

  40. M.F. El-Demerdash et al., Light Metals 1995, ed. J.W. Evans (Warrendale, PA: TMS, 1995), pp. 289–294.

    Google Scholar 

  41. C. Droste et al., Light Metals 1998, ed. B.J. Welch (Warrendale, PA: TMS, 1998), pp. 419–428.

    Google Scholar 

  42. V. Gusberti et al., in Ref. 21, pp. 317–322.

    Google Scholar 

  43. A.D. Sneyd et al., J. Fluid Mech., 263 (1994), pp. 343–359.

    Article  MATH  ADS  Google Scholar 

  44. N. Urata, in Ref. 8, pp. 455–460

    Google Scholar 

  45. H. Sun et al., Fluid Dynamics Research, 35(4) (2004), pp. 255–274.

    Article  MATH  ADS  Google Scholar 

  46. M. Kadkhodabeigi and Y. Saboohi, in Ref. 21, pp. 345–349.

    Google Scholar 

  47. R.J. Moreau and D. Ziegler, Light Metals 1986, ed. R.E. Miller (Warrendale, PA: TMS, 1986), pp. 359–364.

    Google Scholar 

  48. D.P. Ziegler, Metallurgical Transactions B, 24B (1993), pp. 899–906.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Li, J., Wang, Z. et al. The numerical modeling of melt flow and MHD instabilities in an aluminum reduction cell. JOM 62, 26–31 (2010). https://doi.org/10.1007/s11837-010-0163-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0163-y

Keywords

Navigation