Skip to main content
Log in

Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte–Metal Interface in Aluminum Electrolysis Cells

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath–metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath–metal interface is tracked directly in the simulation, and the condition of constant anode–cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath–metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath–metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. M. Segatz, D. Vogelsang, C. Droste, and P. Baekler: Light Metals, TMS, Warrendale, PA, 1993, pp. 361-368.

    Google Scholar 

  2. M. Segatz, C. Droste and D. Vogelsang: Light Metals, TMS, Warrendale, PA, 1997, pp 429-435.

    Google Scholar 

  3. O. Zikanov, A. Thess, P.A. Davidson and D.P. Ziegler: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1541-1550.

    Article  Google Scholar 

  4. V. Bojarevics and K. Pericleous: Light Metals, TMS, Warrendale, PA, 2009, pp. 569-574.

    Google Scholar 

  5. V. Potocnik: Light Metals, TMS, Warrendale, PA, 1989, pp. 227-235.

    Google Scholar 

  6. D.S. Severo, A.F. Schneider, E.C.V. Pinto, V. Gusberti and V. Potocnik: Light Metals, TMS, Warrendale, PA, 2005, pp. 475–480.

    Google Scholar 

  7. D.S. Severo, V. Gusberti, A.F. Schneider, E.C.V. Pinto and V. Potocnik: Light Metals, TMS, Warrendale, PA, 2008, pp. 413-418.

    Google Scholar 

  8. J. Li, Y. Xu, H. Zhang and Y. Lai: Int. J. Multiphase Flow, 2011, vol. 37, pp. 46-54.

    Article  Google Scholar 

  9. Q. Wang, B. Li, Z. He and N. Feng: Metall. Mater. Trans. B, 2014, Vol. 45B, pp. 272-294.

    Article  Google Scholar 

  10. J.F. Gerbeau, T. Lelièvre, and C. Le Bris: J. Comput. Phys., 2003, vol. 184, pp. 163-191.

    Article  Google Scholar 

  11. D. Munger and A. Vincent: J. Comput. Phys., 2006, vol. 217, pp. 295-311.

    Article  Google Scholar 

  12. S. Das, G. Brooks and Y. Morsi: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 243-253.

    Article  Google Scholar 

  13. S. Das, Y. Morsi, G. Brooks, Cathode characterization with steel and copper collector bars in an electrolytic cell. JOM, 2014, vol. 66, pp. 235-244.

    Article  Google Scholar 

  14. Y. Song, J. Peng, Y. Di, Y. Wang, B. Li and N. Feng, JOM, 2015, vol. 68, pp. 593-599.

    Article  Google Scholar 

  15. J. Hua, C. Droste, K.E. Einarsrud, M. Rudshaug, R. Jorgensen and N.-H. Giskeodegard: Light Metals, TMS, Warrendale, PA, 2014, pp. 691-695.

    Google Scholar 

  16. J. Hua, M. Rudshaug, C. Droste, R. Jorgensen and N.-H. Giskeodegard: Light Metals, TMS, Warrendale, PA, 2016, pp. 339-344.

    Google Scholar 

  17. S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.

    Book  Google Scholar 

  18. H.P. Dias and R. R. de Moura: Light Metals, TMS, Warrendale, PA, 2005, pp. 341-346.

    Google Scholar 

  19. D.S. Severo, V.Gusberti, E.C.V. Pinto and R.R. Moura: Light Metals, TMS, Warrendale, PA, 2007, pp. 287-292.

    Google Scholar 

  20. J. P. Givry: Trans. Met. Soc. AIME, 1967 vol. 239, pp. 1161-1166.

    Google Scholar 

Download references

Acknowledgments

The present work was supported by several Projects financed by the Research Council of Norway, Institute for Energy Technology and Hydro Primary Metal Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Hua.

Additional information

Manuscript submitted February 6, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, J., Rudshaug, M., Droste, C. et al. Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte–Metal Interface in Aluminum Electrolysis Cells. Metall Mater Trans B 49, 1246–1266 (2018). https://doi.org/10.1007/s11663-018-1190-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1190-2

Keywords

Navigation