Skip to main content
Log in

Investigation of Internal Cracks in Epoxy-Alumina Using In Situ Mechanical Testing Coupled with Micro-CT

  • Multiscale Experiments and Modeling in Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Polymer-ceramic composites are widely used in biomedical applications. This paper presents the results of an experimental investigation on the crack extension inside epoxy-alumina. Specimens with 5 vol.%, 10 vol.%, …, 25 vol.% fillers fractions were fabricated. Three-point bending on single-edge notched bend specimens were performed using conventional mechanical tester and in situ mechanical tester coupled with micro-CT, respectively. Fracture toughness was measured to be 2.10–2.51 \({\text{MPa}}\sqrt {\text{m}} \), and it decreased with increasing filler fraction. When cracks were shorter than 0.88 mm, crack resistance for 5 and 25 vol.% epoxy-alumina was similar. Beyond 0.88 mm, 25 vol.% epoxy-alumina exhibited no crack resistance, whereas stress intensity factor kept increasing in 5 vol.% epoxy-alumina. The matrix-particle interfaces were the weakest link, where cracks often initiated from. Crack bridging by uncracked ligament and crack deflection were commonly observed toughening mechanisms. To design robust epoxy-alumina composites, increasing matrix-particle interface strength is recommended for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

References

  1. D. Mohamad Yunos, O. Bretcanu, and A.R. Boccaccini, J. Mater. Sci. 43, 4433. (2008).

    Article  Google Scholar 

  2. H. Qiu, J. Yang, P. Kodali, J. Koh, and G.A. Ameer, Biomaterials 27, 5845. (2006).

    Article  Google Scholar 

  3. V. Mouriño, J.P. Cattalini, J.A. Roether, P. Dubey, I. Roy, and A.R. Boccaccini, Expert Opin. Drug Deliv. 10, 1353. (2013).

    Article  Google Scholar 

  4. J. Du, X. Niu, N. Rahbar, and W. Soboyejo, Acta Biomater. 9, 5273. (2013).

    Article  Google Scholar 

  5. J. Du, X. Niu, and W. Soboyejo, J. Mech. Behav. Biomed. Mater. 46, 41. (2015).

    Article  Google Scholar 

  6. J.J. Kruzic, R.K. Nalla, J.H. Kinney, and R.O. Ritchie, Biomaterials 24, 5209. (2003).

    Article  Google Scholar 

  7. R.K. Nalla, J.J. Kruzic, J.H. Kinney, and R.O. Ritchie, Biomaterials 26, 217. (2005).

    Article  Google Scholar 

  8. P.J. Schilling, B.R. Karedla, A.K. Tatiparthi, M.A. Verges, and P.D. Herrington, Compos. Sci. Technol. 65, 2071. (2005).

    Article  Google Scholar 

  9. A.J. Moffat, P. Wright, J.Y. Buffière, I. Sinclair, and S.M. Spearing, Scr. Mater. 59, 1043. (2008).

    Article  Google Scholar 

  10. B. Croom, W.M. Wang, J. Li, and X. Li, Exp. Mech. 56, 999. (2016).

    Article  Google Scholar 

  11. Y. Zhou, C. Gong, G.S. Lewis, A.D. Armstrong, and J. Du, Extrem. Mech. Lett. 35, 100614. (2020).

    Article  Google Scholar 

  12. Y. Zhou, C. Gong, M. Hossaini-Zadeh, and J. Du, J. Mech. Behav. Biomed. Mater. 110, 103858. (2020).

    Article  Google Scholar 

  13. D.K. Shukla, and V. Parameswaran, J. Mater. Sci. 42, 5964. (2007).

    Article  Google Scholar 

  14. ASTM E399, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K1C of Metallic Material (2013).

  15. J.E. Srawley, Int. J. Fract. 12, 475. (1976).

    Google Scholar 

  16. L.M. McGrath, R.S. Parnas, S.H. King, J.L. Schroeder, D.A. Fischer, and J.L. Lenhart, Polymer (Guildf). 49, 999. (2008).

    Article  Google Scholar 

  17. S. Zhao, L. Schadler, R. Duncan, H. Hillborg, and T. Auletta, Compos. Sci. Technol. 68, 2965. (2008).

    Article  Google Scholar 

  18. D. Shukla, S. Kasisomayajula, and V. Parameswaran, Compos. Sci. Technol. 68, 3055. (2008).

    Article  Google Scholar 

  19. P.R. Marur, R.C. Batra, G. Garcia, and A.C. Loos, J. Mater. Sci. 39, 1437. (2004).

    Article  Google Scholar 

  20. A. Omrani, L.C. Simon, and A.A. Rostami, Mater. Chem. Phys. 114, 145. (2009).

    Article  Google Scholar 

  21. O. Jin, Y. Li, and W.O. Soboyejo, Appl. Compos. Mater. 5, 25. (1998).

    Article  Google Scholar 

  22. B. Wetzel, P. Rosso, F. Haupert, and K. Friedrich, Eng. Fract. Mech. 73, 2375. (2006).

    Article  Google Scholar 

  23. J. Douce, J.P. Boilot, J. Biteau, L. Scodellaro, and A. Jimenez, Thin Solid Films 466, 114. (2004).

    Article  Google Scholar 

  24. M.C. Kuo, C.M. Tsai, J.C. Huang, and M. Chen, Mater. Chem. Phys. 90, 185. (2005).

    Article  Google Scholar 

  25. L. Jiang, J. Zhang, and M.P. Wolcott, Polymer (Guildf). 48, 7632. (2007).

    Article  Google Scholar 

  26. Y. Chen, S. Zhou, H. Yang, and L. Wu, J. Appl. Polym. Sci. 95, 1032. (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Science Foundation (#1826221). The authors are grateful to the program manager, Dr. Siddiq Qidwai, for his encouragement and support. Appreciation is extended to Dr. Timothy Stecko of Penn State Center for Quantitative Imaging for technical assistance with micro-CT scanning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Su, K., Man, R. et al. Investigation of Internal Cracks in Epoxy-Alumina Using In Situ Mechanical Testing Coupled with Micro-CT. JOM 73, 2452–2459 (2021). https://doi.org/10.1007/s11837-021-04714-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04714-x

Navigation