Skip to main content

Advertisement

Log in

Multiscale Mechanics of Eggshell and Shell Membrane

  • Multiscale Experiments and Modeling in Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Eggshell is a target material for biomimicry: a biogenic material that is synthesized quickly under near-ambient conditions, and which has intriguing mechanical properties. Biomineralization in such natural systems utilizes organic molecules, both providing a surface to facilitate heterogeneous mineral nucleation and captured within the deposited mineral. Here, we examined the relationship between calcitic mineralized shell and the organic eggshell membrane. Elastic modulus and hardness of shell, as measured by nanoindentation in cross-section, exhibited approximately constant property values across three egg-laying species. Macro-scale fracture experiments demonstrated the structural importance of the fibrous eggshell membrane, with weak influence on egg fracture force but substantial effect on work of fracture. This effect was different for complete removal of the membrane versus chemical drying. The membrane thus represents a distinct target for improving egg mechanical properties independent of mineral quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. J.F.V. Vincent, O.A. Bogatyreva, N.R. Bogatyrev, A. Bowyer, A.K. Pahl, and J.R. Soc, Interface 3, 471. (2006).

    Google Scholar 

  2. A.L. Boskey, Connect. Tissue Res. 44, 5. (2009).

    Article  Google Scholar 

  3. M.I. Oyen, MRS Bull. 33, 49. (2008).

    Article  Google Scholar 

  4. D.G. Strange, and M.I. Oyen, Acta Biomater. 7, 3586. (2011).

    Article  Google Scholar 

  5. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Science 322, 1516. (2008).

    Article  Google Scholar 

  6. O.E. Armitage, D.G.T. Strange, and M.L. Oyen, J. Mater. Res. 27, 3157. (2012).

    Article  Google Scholar 

  7. M.T. Hincke, Y. Nys, J. Gautron, K. Mann, A.B. Rodriguez-Navarro, and M.D. McKee, Front. Biosci. (Landmark Ed.) 17, 1266. (2012).

    Article  Google Scholar 

  8. P. Hunton, Braz. J. Poult. Sci. 7, 67. (2005).

    Article  Google Scholar 

  9. Q. Hu, M.H. Nielsen, C.L. Freeman, L.M. Hamm, J. Tao, L.R.I. Lee, T.Y.J. Han, U. Becker, J.H. Harding, P.M. Dove, and I.J. De Yoreo, Faraday Discuss. 159, 509. (2012).

    Article  Google Scholar 

  10. Y. Nys, J. Gautron, J.M. Garcia-Ruiz, and M.T. Hincke, C. R. Palevol 3, 549. (2004).

    Article  Google Scholar 

  11. T.M. Wu, J.P. Rodriguez, D.J. Fink, D.A. Carrino, J. Blackwell, A.I. Caplan, and A.H. Heuer, Matrix Biol. 14, 507. (1995).

    Article  Google Scholar 

  12. M.S. Fernandez, J.I. Passalacqua, J.I. Arias, and J.L. Arias, J. Struct. Biol. 148, 1. (2004).

    Article  Google Scholar 

  13. A. Ar, H. Rahn, and C.V. Paganelli, Condor 81, 331. (1979).

    Article  Google Scholar 

  14. M.C. Stoddard, E.H. Yong, D. Akkaynak, C. Sheard, J.A. Tobias, and M. Mahadevan, Science 356, 1249. (2017).

    Article  Google Scholar 

  15. E.N. Hahn, V.R. Sherman, A. Pissarenko, S.D. Rohrback, D.J. Fernandes, M.A. Meyers, and J.R. Soc, Interface 14, 20160804. (2017).

    Google Scholar 

  16. D. Taylor, M. Walsh, A. Cullen, and P. O’Reilly, Acta Biomater. 37, 21. (2016).

    Article  Google Scholar 

  17. W.C. Oliver, and G.M. Pharr, J. Mater. Res. 7, 1564. (1992).

    Article  Google Scholar 

  18. R.F. Cook, and M.L. Oyen, Int. J. Mater. Res. 98, 370. (2007).

    Article  Google Scholar 

  19. M.L. Oyen, and R.F. Cook, J. Mater. Res. 18, 139. (2003).

    Article  Google Scholar 

  20. M.C. Stoddard, C. Sheard, D. Akkaynak, E.H. Yong, L. Mahadevan, and J.A. Tobias, Ibis 161, 922. (2019).

    Article  Google Scholar 

  21. M.M. Fathi, A.E. El-Dlebshany, M.B. El-Deen, L.M. Radwan, and G.N. Rayan, Poult. Sci. 95, 2570. (2016).

    Article  Google Scholar 

  22. A. Wistedt, Y. Ridderstrale, H. Wall, and L. Holm, Acta Vet. Scand. 56, 34. (2014).

    Article  Google Scholar 

  23. S. van Mourik, B.P.G.J. Alders, F. Helderman, L.J.F. van de Ven, and P.W.G. Groot Koerkamp, Poult. Sci. 96, 1956. (2017).

    Article  Google Scholar 

  24. A. Finnemore, P. Cunha, T. Shean, A. Vignolini, S. Guldin, M. Oyen, and U. Steiner, Nat. Commun. 3, 966. (2012).

    Article  Google Scholar 

  25. F. Barthelat, and H.D. Espinosa, Exp. Mech. 47, 311. (2007).

    Article  Google Scholar 

  26. J.W. Ager, G. Balooch, and R.O. Ritchie, J. Mater. Res. 21, 1878. (2006).

    Article  Google Scholar 

  27. M.E. Launey, M.J. Buehler, and R.O. Ritchie, Ann. Rev. Mater. Res. 40, 25. (2010).

    Article  Google Scholar 

  28. V. Imbeni, J.J. Kruzic, G.W. Marshall, S.J. Marshall, and R.O. Ritchie, Nat. Mater. 4, 229. (2005).

    Article  Google Scholar 

  29. E.D. Yilmaz, G.A. Schneider, and M.V. Swain, Philos. Trans. A 373, 20140130. (2015).

    Article  Google Scholar 

  30. H. Gao, B. Ji, I.L. Jager, E. Arzt, and O. Fratzl, Proc. Natl. Acad. Sci. USA 100, 5597. (2003).

    Article  Google Scholar 

  31. A.K. Bembey, A.J. Bushby, A. Boyde, V.L. Ferguson, and M.I. Oyen, J. Mater. Res. 21, 1962. (2006).

    Article  Google Scholar 

  32. R.K. Nalla, M. Balooch, J.W. Ager, J.J. Kruzic, J.H. Kinney, and R.O. Ritchie, Acta Biomater. 1, 31. (2005).

    Article  Google Scholar 

  33. K.M. Entwistle, and T.Y. Reddy, Proc. R. Soc. Lond. B 263, 433. (1996).

    Article  Google Scholar 

  34. S.J. Portugal, J. Bowen, and C. Riehl, Ibis 160, 173. (2018).

    Article  Google Scholar 

  35. M.E. Broz, R.F. Cook, and D.L. Whitney, Am. Miner. 91, 135. (2006).

    Article  Google Scholar 

  36. M.L. Oyen, PhD thesis, University of Minnesota (2005).

  37. C.R. Creger, H. Phillips, and J.T. Scott, Poult. Sci. 55, 1717. (1976).

    Article  Google Scholar 

  38. D.G.T. Strange, and M.L. Oyen, Biomimetic composites, in Biomimetics: Nature-Based Innovation. ed. by Y. Bar-Cohen (CRC, Boca Raton, 2011), p. 169.

    Google Scholar 

Download references

Acknowledgements

The author acknowledges funding from the U.S. Army Engineer Research and Development Center, Army Corps of Engineers, through the International Research Office (London, UK). Some of this work was conducted when the author was a faculty member in the Department of Engineering, University of Cambridge, with assistance from David Labonte, H. Burak Caliskan, and Oliver Armitage, and their contributions are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Oyen.

Ethics declarations

The author declares no conflict of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyen, M.L. Multiscale Mechanics of Eggshell and Shell Membrane. JOM 73, 1676–1683 (2021). https://doi.org/10.1007/s11837-021-04690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04690-2

Navigation