Skip to main content
Log in

Implications of Direct Use of Slag from Ironmaking Processes as Molten Oxide Electrolyte

  • Pyrometallurgical Processing of Secondary Resources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The thermochemical and electrical behavior of ironmaking slag produced from titanomagnetite concentrates has been assessed in the vicinity of its tapping temperature. A combination of electrochemical measurements in a modified thermal imaging furnace and computational thermodynamic calculations was employed to elucidate its potential use as a molten oxide electrolyte for the extraction of high-purity metal. The results show that the presence of entrained iron species in the ironmaking slag decreases the faradaic efficiency of the electrolysis. Thermodynamic predictions reveal a small electrochemical window of operation between the decomposition of silica and titania, which might result in the co-reduction of titanium and silicon ions from the melt. Practical considerations for the electrochemical production of metal directly from the ironmaking process are discussed, and further experimental investigation of the electrochemical behavior of this material is justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Calculations were made based on slags with 30 wt.% \(\hbox {TiO}_{2}\)9 and 54 wt.% \(\hbox {TiO}_{2}\) for ilmenite.13 Selling prices for air-cooled ironmaking slag average 8.53 USD per tonne14 and 180 USD per tonne for ilmenite.13

References

  1. UN Department of Economic and Social Affairs, Population Division, World population prospects: The 2017 revision: Key Findings and Advance Tables. Working paper no. ESA/P/WP/248. Technical reports, United Nations New York, NY (2017).

  2. G.Z. Chen, D.J. Fray, and T.W. Farthing, Nature 407(6802), 361. (2000).

    Article  Google Scholar 

  3. A. Allanore, L. Yin, and D.R. Sadoway, Nature 497(7449), 353. (2013). https://doi.org/10.1038/nature12134.

    Article  Google Scholar 

  4. A. Allanore, Electrochim. Acta 110, 587. (2013). https://doi.org/10.1016/j.electacta.2013.04.095.

    Article  Google Scholar 

  5. J. Wiencke, H. Lavelaine, P.J. Panteix, C. Petitjean, and C. Rapin, J. Appl. Electrochem. 48(1), 115. (2018). https://doi.org/10.1007/s10800-017-1143-5.

    Article  Google Scholar 

  6. K. Daehn and A. Allanore, Curr. Opin. Electrochem.. (2020). https://doi.org/10.1016/j.coelec.2020.04.011.

    Article  Google Scholar 

  7. A. Allanore, Electrochem. Soc. Interface 26(2), 63. (2017).

    Article  Google Scholar 

  8. C. Bataille, M. Ahman, K. Neuhoff, L.J. Nilsson, M. Fischedick, S. Lechtenbohmer, B. Solano-Rodriquez, A. Denis-Ryan, S. Stiebert, H. Waisman, O. Sartor, and S. Rahbar, J. Clean. Prod. 187, 960. (2018). https://doi.org/10.1016/j.jclepro.2018.03.107.

    Article  Google Scholar 

  9. S. Martin-Treceno, C. Bishop, A. Marshall, and M. Watson, in Chemeca 2018 (Institution of Chemical Engineers, Queenstown, NZ, 2018), pp. 28.1–28.9.

  10. K.C. Curry. U.S. Geological Survey, Mineral Commodity Summaries: Iron and Steel Slag. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-iron-steel-slag.pdf. Accessed 30 Sept 2020.

  11. R. Dippenaar, Ironmak. Steelmak. 32(1), 35. (2005). https://doi.org/10.1179/174328105X15805.

    Article  Google Scholar 

  12. B. Lin, H. Wang, X. Zhu, Q. Liao, and B. Ding, Appl. Therm. Eng. 96, 432. (2016). https://doi.org/10.1016/j.applthermaleng.2015.11.075.

    Article  Google Scholar 

  13. J. Gambogi. U.S. Geological Survey, Mineral Commodity Summaries: Titanium Mineral Concentrates. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-titanium-minerals.pdf. Accessed 30 Sept 2020.

  14. H.G. Van Oss, Slag-iron and steel [Advance release]. 2016 minerals yearbook, U.S. Geological Survey (2018).

  15. L.S. Li and Z.T. Sui, Acta Phys. Chem. Sin. 17, 845. (2001).

    Article  Google Scholar 

  16. X.F. She, H.Y. Sun, X.J. Dong, Q.G. Xue, and J.S. Wang, J. Min. Metall. Sect. B Metall. 49(3), 263. (2013).

    Article  Google Scholar 

  17. E. Standish, D. Stefanescu, and P. Curreri, in 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2009). https://doi.org/10.2514/6.2009-1657.

  18. A.Y. Ilyushechkin, M.A. Duchesne, S.S. Hla, A. Macchi, and E.J. Anthony, J. Mater. Sci. 48(3), 1053. (2013). https://doi.org/10.1007/s10853-012-6838-8.

    Article  Google Scholar 

  19. S.L. Schiefelbein and D.R. Sadoway, Metall. Mater. Trans. B 28(6), 1141. (1997).

    Article  Google Scholar 

  20. M. Allibert, Slag Atlas, 2nd edn. (Verlag Stahleisen, Düsseldorf, 1995)..

    Google Scholar 

  21. K. Mills, L. Yuan, and R. Jones, J. S. Afr. Inst. Min. Metall. 111(10), 649. (2011).

    Google Scholar 

  22. I.H. Jung and M.A. Van Ende, Metall. Mater. Trans. B 51(5), 1851. (2020). https://doi.org/10.1007/s11663-020-01908-7.

    Article  Google Scholar 

  23. B.R. Nakanishi and A. Allanore, J. Electrochem. Soc. 164(13), E460. (2017). https://doi.org/10.1149/2.1091713jes.

    Article  Google Scholar 

  24. N.Z. Steel. The history of ironsand. https://www.nzsteel.co.nz/new-zealand-steel/the-story-of-steel/the-history-of-ironsand/. Accessed 07 Sept 2020.

  25. V. Murariu and J. Svoboda, Phys. Sep. Sci. Eng. 12(1), 1. (2003).

    Article  Google Scholar 

  26. A. Allanore, J. Electrochem. Soc. 162(1), E13. (2015). https://doi.org/10.1149/2.0451501jes.

    Article  Google Scholar 

  27. S. Martin-Treceno, N. Weaver, A. Allanore, C.M. Bishop, A.T. Marshall, and M.J. Watson, Electrochim. Acta 354, 136619. (2020). https://doi.org/10.1016/j.electacta.2020.136619.

    Article  Google Scholar 

  28. N.A. Fried, K.G. Rhoads, and D.R. Sadoway, Electrochim. Acta 46(22), 3351. (2001). https://doi.org/10.1016/S0013-4686(01)00531-X.

    Article  Google Scholar 

  29. I. Olsen, R. Koksbang, and E. Skou, Electrochim. Acta 40(11), 1701. (1995). https://doi.org/10.1016/0013-4686(95)00094-U.

    Article  Google Scholar 

  30. M. Barati and K.S. Coley, Metall. Mater. Trans. B 37(1), 41. (2006). https://doi.org/10.1007/s11663-006-0084-x.

    Article  Google Scholar 

  31. S. Sokhanvaran, S. Thomas, and M. Barati, Electrochim. Acta 66, 239. (2012). https://doi.org/10.1016/j.electacta.2012.01.077.

    Article  Google Scholar 

  32. A. Ducret, D. Khetpal, and D.R. Sadoway, ECS Proc. Vol. 19, 347. (2002). https://doi.org/10.1149/200219.0347PV.

    Article  Google Scholar 

  33. S.K. Ratkje, H. Rajabu, and T. Førland, Electrochim. Acta 38(2), 415. (1993). https://doi.org/10.1016/0013-4686(93)85159-V.

    Article  Google Scholar 

  34. C. Bale, E. Belisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A. Pelton, S. Petersen, C. Robelin, J. Sangster, and P. Spencer, M.A.V. Ende, Calphad-Comput. Coupling Phase Diagr. Thermochem. 54, 35. (2016). https://doi.org/10.1016/j.calphad.2016.05.002.

    Article  Google Scholar 

  35. A.D. Pelton and M. Blander, Metall. Trans. B 17(4), 805. (1986). https://doi.org/10.1007/BF02657144.

    Article  Google Scholar 

  36. L. Zhang, W. Zhang, J. Zhang, and G. Li, Metals 6(5), 105. (2016). https://doi.org/10.3390/met6050105.

    Article  Google Scholar 

  37. B. Sundman, J. Phase Equilib. 12(2), 127. (1991).

    Article  Google Scholar 

  38. N.Z. Steel. The ironmaking process. https://www.nzsteel.co.nz/new-zealand-steel/the-story-of-steel/the-science-of-steel/the-ironmaking-process/. Accessed 07 Oct 2020.

  39. I. Bellemans, E. De Wilde, N. Moelans, and K. Verbeken, Adv. Colloid Interface Sci. 255, 47. (2018). https://doi.org/10.1016/j.cis.2017.08.001.

    Article  Google Scholar 

  40. H. Du, Theory of Smelting V and Ti-Magnetite by Blast Furnace (Science Press, Beijing, 1996).

  41. L. Zhang, L. Zhang, M. Wang, G. Li, and Z. Sui, ISIJ Int. 46(3), 458. (2006).

    Article  Google Scholar 

  42. Y. Chung and A.W. Cramb, Metall. Mater. Trans. B 31(5), 957. (2000). https://doi.org/10.1007/s11663-000-0072-5.

    Article  Google Scholar 

  43. J. Híveš, J. Thonstad, A. Sterten, and P. Fellner, Metall. Mater. Trans. B 27(2), 255. (1996). https://doi.org/10.1007/BF02915051.

    Article  Google Scholar 

  44. S. Wang, G. Li, T. Lou, and Z. Sui, ISIJ Int. 39(11), 1116. (1999). https://doi.org/10.2355/isijinternational.39.1116.

    Article  Google Scholar 

  45. K. Hu, X. Lv, W. Yu, Z. Yan, W. Lv, and S. Li, Metall. Mater. Trans. B 50, 2982. (2019). https://doi.org/10.1007/s11663-019-01702-0.

    Article  Google Scholar 

  46. K.C. Mills and B.J. Keene, Int. Mater. Rev. 32(1), 1. (1987). https://doi.org/10.1179/095066087790150296.

    Article  Google Scholar 

  47. J. Wiencke, H. Lavelaine, P.J. Panteix, C. Petitjean, and C. Rapin, J. Electrochem. Soc. 166(14), E489. (2019). https://doi.org/10.1149/2.0811914jes.

    Article  Google Scholar 

  48. S. Poizeau and D.R. Sadoway, in Light Metals 2011—TMS 2011 Annual Meeting and Exhibition, February 27, 2011–March 3, 2011 (Minerals, Metals and Materials Society, 2011), TMS Light Metals, pp. 387–392.

  49. G. Rouaut, A.E. Gheribi and P. Chartrand, J. Fluor. Chem.. (2020). https://doi.org/10.1016/j.jfluchem.2020.109597.

    Article  Google Scholar 

  50. S. Creager, in Handbook of Electrochemistry, ed. by C.G. Zoski (Elsevier, Amsterdam, 2007), pp. 57–72. https://doi.org/10.1016/B978-044451958-0.50004-5.

  51. J.L. Liao, J. Li, X.D. Wang, and Z.T. Zhang, Ironmak. Steelmak. 39(2), 133. (2012). https://doi.org/10.1179/1743281211Y.0000000064.

    Article  Google Scholar 

  52. J. Híveš, P. Fellner, and J. Thonstad, in Molten Salts Chemistry and Technology (Wiley, 2014), chap. 1.10, pp. 95–101.

  53. G. Haarberg, A. Sterten, H. Gudbrandsen, F. Olufsen, and S. Rolseth, Light metals-Warrendale (1998), pp. 367–370.

  54. K. Mohandas and D. Fray, Trans. Indian Inst. Met. 57(6), 579. (2004).

    Google Scholar 

  55. M. Gibilaro, J. Pivato, L. Cassayre, L. Massot, P. Chamelot, and P. Taxil,Electrochim. Acta 56(15), 5410. (2011). https://doi.org/10.1016/j.electacta.2011.02.109.

    Article  Google Scholar 

  56. O. Bjareborn, T. Arif, B. Monaghan, and C.W. Bumby, Mater. Res. Express 7(10), 106508. (2020). https://doi.org/10.1088/2053-1591/abbd24.

    Article  Google Scholar 

  57. A. Abbasalizadeh, A. Malfliet, S. Seetharaman, J. Sietsma, and Y. Yang, J. Sustain. Metall. 3(3), 627. (2017). https://doi.org/10.1007/s40831-017-0120-x.

    Article  Google Scholar 

  58. Z. Chen, Y. You, and K. Morita, ACS Sustain. Chem. Eng. 6(5), 7078. (2018). https://doi.org/10.1021/acssuschemeng.8b00919.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank BlueScope Steel for samples. This research was funded by the New Zealand Ministry of Business, Innovation, and Employment (MBIE) under Contract CONT-46287-CRFSI-UOC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Bishop.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín Treceño, S., Allanore, A., Bishop, C.M. et al. Implications of Direct Use of Slag from Ironmaking Processes as Molten Oxide Electrolyte. JOM 73, 1899–1908 (2021). https://doi.org/10.1007/s11837-021-04681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04681-3

Navigation