Skip to main content
Log in

Review: Research Progress on Liquid–Liquid Extraction of Chromium

  • Adaptive Metallurgical Processing Technologies for Strategic Metal Recycling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The wide application of chromium will definitely increase the probability of impact of chromium-containing effluents on the surrounding environment and human health. Prior to reviewing the research progress on the liquid–liquid extraction of chromium, the common methods for treating chromium-containing wastewater and chromium species in solution are first introduced. Liquid–liquid extraction processes of Cr(VI) and Cr(III) are respectively investigated in detail in subsequent sections. The typical oxidization effect of Cr(VI) and aging effect of Cr(III) are analyzed. Most of the mechanisms involved in chromium extraction processes are also reviewed. This literature review provides not only a theoretical basis for choosing an appropriate ion host, but also an important reference for optimization of chromium removal processes by solvent extraction. In the industrial production of nickel, cobalt, and scandium, it can also be used to predict the effects of Cr(III) aging and Cr(VI) oxidation on chromium-containing solvent extraction systems and further avoid these negative effects in advance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Vasilatos, I. Megremi, M. Economou-Eliopoulos, and I. Mitsis, Hellenic. J. Geosci. 43, 57. (2008).

    Google Scholar 

  2. R. Shrivastava, R. Upreti, P. Seth, U. Chaturvedi, and F.E.M.S. Immunol, Med. Microbiol. 34, 1. (2002).

    Google Scholar 

  3. E.P. Agency, National Primary Drinking Water Regulations, in Federal Register (Environmental Protection Agency, U.S, 2009)

    Google Scholar 

  4. A. Agrawal, V. Kumar, and B. Pandey, Min. Process. Extract. Metall. Rev. 27, 99. (2006).

    Article  Google Scholar 

  5. W.H. Organization, Guidelines for Drinking-water Quality, 4th edn. (WHO Press, Malta, 2011), p 178

    Google Scholar 

  6. L. Zhu, Y. Jia, X. Lv, S. Gao, C. Wu, and Q. Gao, Technol. Water Treat. 41, 36. (2015).

    Google Scholar 

  7. H.T. Hall, and H. Eyring, J. Am. Chem. Soc. 72, 782. (1950).

    Article  Google Scholar 

  8. S.K. Sharma, B. Petrusevski, and G. Amy, J. Water Supply Res. T. 57, 541. (2008).

    Article  Google Scholar 

  9. M. Owlad, M.K. Aroua, W.A.W. Daud, and S. Baroutian, Water Air Soil Poll. 200, 59. (2009).

    Article  Google Scholar 

  10. M. Sprynskyy, J. Hazard. Mater. 161, 1377. (2009).

    Article  Google Scholar 

  11. K. Emerson, and W.M. Graven, J. Inorg. Nucl. Chem. 11, 309. (1959).

    Article  Google Scholar 

  12. D. Rai, B.M. Sass, and D.A. Moore, Inorg. Chem. 26, 345. (1987).

    Article  Google Scholar 

  13. K.K. Larsen, D. Wielandt, M. Schiller, and M. Bizzarro, J. Chromatogr. A 1443, 162. (2016).

    Article  Google Scholar 

  14. V.M. Rao, and M.N. Sastri, Talanta 27, 771. (1980).

    Article  Google Scholar 

  15. R.K. Tandon, P.T. Crisp, J. Ellis, and R.S. Baker, Talanta 31, 227. (1984).

    Article  Google Scholar 

  16. X. Chen, P. Li, and S. Yue, J. S. China Normal Univ. 70-74 (2006).

  17. Q. He, L. Song, H. Yan, D. Zhao, H. Que, and Y. Lin, CN 104787952 B, 2016.

  18. Q. He, L. Song, H. Yan, X. Que, and D. Zhao, CN 104959369 B, 2015.

  19. Q. He, L. Song, H. Yan, X. Que, B. Liu, Q. Cai, J. Liu, Y. Yao, and B. Sun, US 10577676 B2, 2015.

  20. Y. Li, and C. Cui, Hexavalent Chromium 5, 494. (2015).

    Google Scholar 

  21. R. Liang, Study on treatment of chrome-plating effluent containing chromium(VI) by solvent extraction, in Guangdong University of Technology. 2011, Guangdong University of Technology: Guangdong. p. 59.

  22. P. Venkateswaran, and K. Palanivelu, Sep. Purif. Technol. 40, 279. (2004).

    Article  Google Scholar 

  23. V. Eyupoglu, H.I. Turgut, E. Polat, A. Kunduracioglu, M.E. Koc, Z. Sener, and R.A. Kumbasar, J. Disper. Sci. Technol. 38, 110. (2017).

    Article  Google Scholar 

  24. K. Yoganand, and M. Umapathy, Arab. J. Chem. 10, S1227. (2017).

    Article  Google Scholar 

  25. S. Kalidhasan, and N. Rajesh, J. Hazard. Mater. 170, 1079. (2009).

    Article  Google Scholar 

  26. M. Lissel, D. Feldman, M. Nir, and M. Rabinovitz, Tetrahedron Lett., 30, (1989).

  27. Y. Huang, C. Chen, J. Kuo, and B. Chem, Soc. Jpn. 64, 3059. (1991).

    Google Scholar 

  28. Q. Duan, Hydrometall. China 20, 141. (2001).

    Google Scholar 

  29. Z. Yang, A.K. Guha, and K.K. Sirkar, Ind. Eng. Chem. Res. 35, 1383. (1996).

    Article  Google Scholar 

  30. Y. Chu, P. Liu, S. Yan, Z. Wu, and Z. Yan, Chin. J. Appl. Chem. 13, 103. (1996).

    Google Scholar 

  31. J. Ren, X. Ji, and Y. Li, Plating Finishing 41, 41. (2019).

    Google Scholar 

  32. P.K. Saw, A.K. Prajapati, and M.K. Mondal, J. Mol. Liq., 101-109 (2018).

  33. G.B. Fasolo, R. Malvano, and A. Massaglia, Anal. Chim. Acta 29, 569. (1963).

    Article  Google Scholar 

  34. S. Kalidhasan, M. Ganesh, S. Sricharan, and N. Rajesh, J. Hazard. Mater. 165, 886. (2009).

    Article  Google Scholar 

  35. X. Lin, H. Cao, and Y. Zhang, Spectrosc. Spect. Anal. 28, 1518. (2008).

    Google Scholar 

  36. Z. Ge, Y. Yang, S. Sun, and J. Shen, Chin. J. Appl. Chem. 12, 57. (1995).

    Google Scholar 

  37. X. Jing, P. Ning, H. Cao, J. Wang, and Z. Sun, Solvent Extr. Ion Exc. 35, 519. (2017).

    Article  Google Scholar 

  38. Y. Guo, J. Cui, J. Li, M. Li, and Y. Song, Environ. Sci. Technol. 26, 15. (2003).

    Google Scholar 

  39. X. Jing, J. Wang, H. Cao, P. Ning, and Q. Wang, Chem. Pap. 72, 109. (2018).

    Article  Google Scholar 

  40. X. Ding, CN 102730782 A, 2012.

  41. Q. Wei, Z. Ying, and X. Ren, CN 109207724 B, 2018.

  42. A. Agrawal, C. Pal, and K.K. Sahu, IN270476B, 2009.

  43. R.T. Bachmann, D. Wiemken, A.B. Tengkiat, and M. Wilichowski, Sep. Purif. Technol. 75, 303. (2010).

    Article  Google Scholar 

  44. H.H. Someda, E.A. El-Shazly, and R.R. Sheha, J. Hazard. Mater. 117, 213. (2005).

    Article  Google Scholar 

  45. A. Senol, Sep. Purif. Technol. 36, 63. (2004).

    Article  Google Scholar 

  46. J. Chen, S. Cao, and X. Qian, Environ. Protection. Chem. Ind. 21, 311. (2001).

    Google Scholar 

  47. A. Ishfaq, S. Ilyas, A. Yaseen, and M. Farhan, Sep. Purif. Technol. 209, 964. (2019).

    Article  Google Scholar 

  48. R.R. Srivastava, S. Ilyas, H. Kim, N.L.M. Tri, N. Hassan, M. Mudassir, and N. Talib, JOM 72, 839. (2020).

    Article  Google Scholar 

  49. X. Huo, and C. Liu, Plating Finishing 32, 40. (2010).

    Google Scholar 

  50. L. Zhang, Extraction of Cr6+ from electroplate wastewater in an impinging extractor. 2007, Sichuan university: Sichuan, China.

  51. K.H. Arend, H. Specker, and Z. Anorg, Allgem. Chem. 333, 18. (1964).

    Article  Google Scholar 

  52. W. Zhang, J. Liu, Z. Ren, C. Du, and J. Ma, J. Chem. Eng. Data 52, 2220. (2007).

    Article  Google Scholar 

  53. M.N. Sastri, and D.S. Sundar, Fresenius J. Anal. Chem. 195, 343. (1963).

    Article  Google Scholar 

  54. F.E. Ferrand, F.E. Ferrand, J. Chem. Educ. 37, 411. (1960).

    Article  Google Scholar 

  55. M. Niitsu, and T. Sekine, J. Inorg. Nucl. Chem. 38, 1053. (1976).

    Article  Google Scholar 

  56. X. Meng, L. Wang, X. Wang, Y. Lv, Y. Song, and J. Li, CN 110745901 A, 2019.

  57. K.S. John, J. Saji, M. Reddy, T. Ramamohan, and T. Rao, Hydrometallurgy 51, 9. (1999).

    Article  Google Scholar 

  58. A. Agrawal, C. Pal, and K.K. Sahu, J. Hazard. Mater. 159, 458. (2008).

    Article  Google Scholar 

  59. M. Iqbal, and M. Ejaz, J. Radioanal. Chem. 43, 199. (1978).

    Article  Google Scholar 

  60. C. Mane, S. Mahamuni, S. Kolekar, S.-H. Han, and M. Anuse, Arab. J. Chem. 9, S1420. (2016).

    Article  Google Scholar 

  61. Y. Li, C. Zhou, Y. Yang, and L. Yang, CN 108823408 B, 2018.

  62. J. Hála, O. Navrátil, and V. Nechuta, J. Inorg. Nucl. Chem. 28, 553. (1966).

    Article  Google Scholar 

  63. G.K. Schweitzer, and S.W. McCarty, J. Inorg. Nucl. Chem. 27, 191. (1965).

    Article  Google Scholar 

  64. G. Winkhaus, and H. Uhrig, Fresenius. Z. Anal. Chem. 200, 14. (1964).

    Article  Google Scholar 

  65. D.T. Burns, D. Chimpalee, and P. Hagan, Anal. Chim. Acta 198, 293. (1987).

    Article  Google Scholar 

  66. H.A. Bryan, and J.A. Dean, Anal. Chem. 29, 1289. (1957).

    Article  Google Scholar 

  67. S.A. Katz, W.M. Mcnabb, and J.F. Hazel, Anal. Chim. Acta 27, 405. (1962).

    Article  Google Scholar 

  68. W.J. Maeck, M.E. Kussy, and J.E. Rein, Anal. Chem. 33, 1602. (1962).

    Article  Google Scholar 

  69. H. Wang, F. Chen, H. Wang, M. Li, H. Huang, and Y. Zhang, Chin. J. Process Eng. 15, 788. (2015).

    Google Scholar 

  70. Y. Akama, and A. Sali, Talanta 57, 681. (2002).

    Article  Google Scholar 

  71. T.N. Simonova, V.A. Dubrovina, and A.B. Vishnikin, J. Serb. Chem. Soc. 81, 645. (2016).

    Article  Google Scholar 

  72. S. Memon, M. Tabakci, D.M. Roundhill, and M. Yilmaz, Reactive Funct. Polym. 66, 1342. (2006).

    Article  Google Scholar 

  73. J. Wen, and T. Zhang, Ind. Water Wastewater 45, 23. (2014).

    Google Scholar 

  74. S. Memon, D.M. Roundhill, and M. Yilmaz, Collect. Czech. Chem. C. 69, 1231. (2004).

    Article  Google Scholar 

  75. E.M. Georgiev, N. Wolf, and D.M. Roundhill, Polyhedron 16, 1581. (1997).

    Article  Google Scholar 

  76. W. Aeungmaitrepirom, A. Hagege, Z. Asfari, J. Vicens, and M. Leroy, J. Incl. Phenom. Macrocyclic Chem. 40, 225. (2001).

    Article  Google Scholar 

  77. M. Tabakci, S. Memon, M. Yilmaz, and D.M. Roundhill, J. Incl. Phenom. Macro. 45, 267. (2003).

    Article  Google Scholar 

  78. N.J. Wolf, E.M. Georgiev, A.T. Yordanov, B.R. Whittlesey, H.F. Koch, and D.M. Roundhill, Polyhedron 18, 885. (1999).

    Article  Google Scholar 

  79. S. Memon, A. Yilmaz, D.M. Roundhill, and M. Yilmaz, J. Macromol. Sci. A 41, 433. (2004).

    Article  Google Scholar 

  80. M. Tabakci, S. Memon, B. Sap, D.M. Roundhill, and M. Yilmaz, J. Macromol. Sci. A 41, 811. (2004).

    Article  Google Scholar 

  81. S. Memon, and M. Yilmaz, J. Mol. Struct. 595, 101. (2001).

    Article  Google Scholar 

  82. A. Chagnes, and G. Cote, Metals 8, 1. (2018).

    Article  Google Scholar 

  83. M. Iqbal, Y. Tao, S. Xie, Y. Zhu, D. Chen, X. Wang, L. Huang, D. Peng, A. Sattar, M.A.B. Shabbir, H.I. Hussain, S. Ahmed, and Z. Yuan, Biol. Proc. Online 18, 18. (2016).

    Article  Google Scholar 

  84. B. Wionczyk, and W. Apostoluk, Hydrometallurgy 78, 116. (2005).

    Article  Google Scholar 

  85. B. Wionczyk, and W. Apostoluk, Hydrometallurgy 72, 195. (2004).

    Article  Google Scholar 

  86. A.A. Nayl, and H.F. Aly, Trans. Nonferr. Metal. Soc. 25, 4183. (2015).

    Article  Google Scholar 

  87. Y. Xue, Studies on the Extraction Characteristics of Cr(III) with Organophosphate Extractants and Quaternary Amine (Tsinghua University, Beijing, 2009)

    Google Scholar 

  88. B. Wionczyk, and W. Apostoluk, Hydrometallurgy 72, 185. (2004).

    Article  Google Scholar 

  89. O. Kebiche-Senhadji, S. Tingry, P. Seta, and M. Benamor, Desalination 258, 59. (2010).

    Article  Google Scholar 

  90. A.N. Sadikin, Z.A. Muis, and B. Saha, Jurnal Teknologi 46, 1. (2007).

    Google Scholar 

  91. B. McClellan, M. Meredith, R. Parmelee, and J. Beck, Anal. Chem. 46, 306. (1974).

    Article  Google Scholar 

  92. Q. Wang, M. Jiang, M. Wang, and J. Zhang, Nonferr. Metals (Extract. Metall.), 13-16 (2016).

  93. Y.A. El-Nadi, and N.E. El-Hefny, Chem. Eng. Process 49, 159. (2010).

    Article  Google Scholar 

  94. J. Luo, L. Jun, Z. Yang, and X. Liu, Trans. Nonferr. Metal. Soc. 23, 524. (2013).

    Article  Google Scholar 

  95. J. Fan, S. Deng, F. Xie, and Y. Yang, Nonferr. Metals Sci. Eng. 2, 97. (2011).

    Google Scholar 

  96. Y.K.P. Sze, and L. Xue, Sep. Sci. Technol. 38, 405. (2003).

    Article  Google Scholar 

  97. X. Huo, W. Qin, X. Sun, and Y. Dai, J. Chem. Eng. Chin. Univ. 21, 849. (2007).

    Google Scholar 

  98. G. Zhang, D. Chen, W. Zhao, H. Zhao, L. Wang, W. Wang, and T. Qi, Chem. Eng. J. 302, 233. (2016).

    Article  Google Scholar 

  99. P. Liu, D. Tan, and W. Ding, Hydrometall. China 37, 50. (2018).

    Google Scholar 

  100. J. Rajewski, and P. Religa, J. Mol. Liq. 218, 309. (2016).

    Article  Google Scholar 

  101. B. Pandey, G. Cote, and D. Bauer, Hydrometallurgy 40, 343. (1996).

    Article  Google Scholar 

  102. M. Lanagan, and D. Ibana, Miner. Eng. 16, 237. (2003).

    Article  Google Scholar 

  103. V. Rao and S. Prasad, Some investigations on the solvent extraction of chromium(VI) by bis-(2, 4, 4-trimethylpentyl)-phosphinic acid (Cyanex 272), 1988), pp. 338.

  104. M. Karve, D. Pandey, and R. Athavale, J. AOAC Int. 97, 211. (2014).

    Article  Google Scholar 

  105. A. Khwaja, R. Singh, and S. Tandon, Sep. Sci. Technol. 35, 447. (2000).

    Article  Google Scholar 

  106. S. Yadav, O. Singh, and S. Tandon, Indian J. Chem. 30A, 982. (1991).

    Google Scholar 

  107. S. Kusakabe, Bull. Chem. Soc. Jpn. 73, 1171. (2000).

    Article  Google Scholar 

  108. S.K. Majumdar, and A.K. De, Anal. Chem. 32, 1337. (1960).

    Article  Google Scholar 

  109. D. Fei, J. Luo, Y. Dang, L. Li, H. Gu, and Z. Xiong, Chin. J. Appl. Chem. 25, 157. (2008).

    Google Scholar 

  110. F. Hernandez, P. Jitaru, F. Cormant, L. Noël, and T. Guérin, Food Chem. 240, 183. (2018).

    Article  Google Scholar 

  111. W. Al Zoubi, F. Kandil, and M.K. Chebani, Arab. J. Chem. 9, 526. (2016).

    Article  Google Scholar 

  112. H. Lou, X. Cao, X. Yan, L. Wang, and Z. Chen, Water Sci. Technol. 2017, 378. (2018).

    Article  Google Scholar 

  113. P. Nannelli, H.D. Gillman, and B. Block, J. Polym. Sci. Pol. Chem. 9, 3027. (1971).

    Article  Google Scholar 

  114. W. Qin, Y. Xue, X. Huo, X. Sun, and Y. Dai, CIESC J. 60, 2221. (2009).

    Google Scholar 

  115. R.N. Mendoza, T.S. Medina, A. Vera, M.A. Rodriguez, and E. Guibal, Solvent Extr. Ion Exc. 18, 319. (2000).

    Article  Google Scholar 

  116. J. Aggett, and D. Udy, J. Inorg. Nucl. Chem. 32, 2802. (1970).

    Article  Google Scholar 

  117. D. Flett, and D. West, Trans. AIME 247, 288. (1969).

    Google Scholar 

  118. X. Sun, Study on the Performance of Solvent Extraction Chromium(III) (Tsinghua University, Beijing, 2006)

    Google Scholar 

  119. T. Higaki, Y. Ozaki, S. Matsumoto, I. Matsuoka, H. Nagai, T. Nagakura, and K. Kudo, US9963762B2, 2018.

  120. W. Wang, D. Lv, Y. Xu, B. Qin, G. Du, W. Zhou, S. Li, and S. Qiu, WO2015021926A1, 2014.

  121. N. Yan, X. Zhao, S. Zhao, and H. Zheng, Rock Miner. Anal. 34, 1. (2015).

    Google Scholar 

  122. J. Kyle, Pressure acid leaching of Australian nickel/cobalt laterites, in Nickel ’96 Metal to Market. (The Australasian Institute of Mining and Metallurgy, Kalgoorlie, 1996), pp. 245.

    Google Scholar 

  123. S. Sadeghi, and A.Z. Moghaddam, RSC Adv. 5, 60621. (2015).

    Article  Google Scholar 

  124. E. Jean, D. Villemin, M. Hlaibi, and L. Lebrun, Sep. Purif. Technol. 201, 1. (2018).

    Article  Google Scholar 

  125. J. Noro, K. Marurama, and Y. Komatsu, Separation of chromium (III) and chromium (VI) by the combination of solvent and ion exchange methods, The Japan Society for Analytical Chemistry, 2002), pp. i1333.

  126. Á. Béni, R. Karosi, and J. Posta, Microchem. J. 85, 103. (2007).

    Article  Google Scholar 

  127. C.K. Mann, and J.C. White, Anal. Chem. 30, 989. (1958).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from China Postdoctoral Science Foundation (Grant No. 2017M621034) and National Key R&D Program of China (Grant No. 2019YFC1907402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaobo Liu or Weiwei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, S. & Wang, W. Review: Research Progress on Liquid–Liquid Extraction of Chromium. JOM 73, 1371–1385 (2021). https://doi.org/10.1007/s11837-021-04612-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04612-2

Navigation