Skip to main content
Log in

Liquid–Liquid Extraction and Reductive Stripping of Chromium to Valorize Industrial Effluent

  • Cleaner Manufacturing of Critical Metals
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Liquid–liquid extraction of chromium from industrial effluent has been investigated using tributyl phosphate as a potential extractant. Variation of parameters such as the extractant dosage, acid concentration, temperature, and organic-to-aqueous (O/A) ratio revealed that extraction took place through outer-sphere complexation. The adduct formation was further supported by Fourier-transform infrared analysis of the organic phase and the determined enthalpy value (ΔH°, − 18.8 kJ/mole). As predicted by the McCabe–Thiele diagram, quantitative extraction of approximately 5.0 g/L Cr6+ was achieved by two-stage countercurrent extraction at O/A ratio of 1/1.5. Subsequent stripping of the extracted metal in reduced form (as Cr3+) was carried out using ≥ 1.5 M ascorbic acid with 30 min of contact time. Finally, the critical metal was precipitated to recover Cr(OH)3 by pH swing of the stripped solution using NH4OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. APS Physics and MRS, Energy Critical Elements: Securing materials for emerging technologies (A Report by the APS Panel on Public Affairs and the Materials Research Society, 2011), https://www.aps.org/policy/reports/popa-reports/upload/elementsreport.pdf. Accessed 18 May 2019.

  2. A. de Koning, R. Kleijn, G. Huppes, B. Sprecher, G.V. Engelen, and A. Tukker, Resour. Conserv. Recy. 129, 202 (2018).

    Article  Google Scholar 

  3. European Commission Enterprise and Industry, “Critical Raw Materials for the EU” (Report of the ad-hoc working group on defining critical raw materials, 2010), https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en/community/document/critical-raw-materials-eu-report-ad-hoc-working-group-defining-critical-raw. Accessed 26 May 2019.

  4. R. Sattar, S. Ilyas, S. Kousar, A. Khalid, M. Sajid, and S.I. Bukhari, Environ. Eng. Res.25, 88 (2020).

  5. N. Ilyas, S. Ilyas, S. Yousaf, A. Zia, and S. Sattar, Water Sci. Technol. 78, 147 (2018).

    Google Scholar 

  6. P. Pathak and R.R. Srivastava, Renew. Sustain. Energy Rev. 78, 220 (2017).

    Article  Google Scholar 

  7. J.M. Zachara, C.C. Ainsworth, C.E. Cowan, and C.T. Resch, Soil Sci. Soc. Am. J. 53, 418 (1989).

    Article  Google Scholar 

  8. B.A. Calfa and M.L. Torem, Miner. Eng. 21, 48 (2008).

    Article  Google Scholar 

  9. N. Goyal, S.C. Jain, and U.C. Banerjee, Adv. Environ. Res. 7, 311 (2003).

    Article  Google Scholar 

  10. V.M. Rao and M.N. Sastri, Talanta 27, 771 (1980).

    Article  Google Scholar 

  11. V. Prigione, M. Zerlottin, D. Refosco, V. Tigini, A. Anastasi, and G.C. Varese, Bioresour. Technol. 100, 2770 (2009).

    Article  Google Scholar 

  12. C.P. Mane, S.V. Mahamuni, S.S. Kolekar, S.H. Han, and M.A. Anuse, Arab. J. Chem. 9, 1420 (2016).

    Article  Google Scholar 

  13. J. Jia, P. Xue, R. Wang, X. Bai, X. Hu, J. Fan, and E. Liu, J. Chem. Technol. Biotechnol. 93, 2988 (2018).

    Article  Google Scholar 

  14. S.S. Hosseini, A. Nazif, M.A.A. Shahmirzadi, and I. Ortiz, Sep. Purif. Technol. 187, 46 (2017).

    Article  Google Scholar 

  15. M.M. Hossain and T. Ru, J. Chem. Eng. Data 47, 203 (2002).

    Article  Google Scholar 

  16. T. Vincent and E. Guibal, Ind. Eng. Chem. Res. 40, 1406 (2001).

    Article  Google Scholar 

  17. Z.Y. Yang, A.K. Guha, and K.K. Sirkar, Ind. Eng. Chem. Res. 35, 4214 (1996).

    Article  Google Scholar 

  18. M.D. Lanagan and D.C. Ibana, Miner. Eng. 16, 237 (2003).

    Article  Google Scholar 

  19. V.M. Rao and S.K. Prasad, “Some investigations on the solvent extraction of chromium(VI) by bis-(2,4,4-trimethkylpentyl)-phosphonic acid (cyanex 272)” (International Solvent Extraction Conference (ISEC 88), vol. 1, 1988), http://www.solventextract.org/documents/1988/ISEC-1988-Proceedings-Vol1.pdf. Accessed 12 June 2019.

  20. B. Galan, A.M. Uritiga, A.I. Alonso, and M.I. Ortiz, Ind. Eng. Chem. Res. 33, 1765 (1994).

    Article  Google Scholar 

  21. S.L. Lo and S.F. Shiue, Water Res. 32, 174 (1998).

    Article  Google Scholar 

  22. R.T. Bachmann, D. Wiemken, A.B. Tengkiat, and M. Wilichowski, Sep. Purif. Technol. 75, 303 (2010).

    Article  Google Scholar 

  23. A. Chagnes and G. Cote, Metals 8, 57 (2018). https://doi.org/10.3390/met8010057.

    Article  Google Scholar 

  24. C. Deputala, J. Inorg. Nucl. Chem. 30, 1309 (1968).

    Article  Google Scholar 

  25. A. Agrawal, C. Pal, and K.K. Sahu, J. Hazard. Mater. 159, 458 (2008).

    Article  Google Scholar 

  26. Antenna Foundation, “Titration of Active Chlorine with Sodium Thiosulfate” (Water and Hygiene, 2017), https://www.antenna.ch/wp-content/uploads/2017/03/Titration-of-active-chlorine_ENG_web_08.2017-1.pdf. Accessed 5 November 2019.

  27. Y. Suzuki and F. Serita, Ind. Health 23, 207 (1985).

    Article  Google Scholar 

  28. R. Soares, M.I.C. Monterio, S.D.S.H. Junior, F.V.M. Pontes, L.I.D. Silva, A.A. Neto, and R.E. Santelli, Chem. Speciat. Bioavailab. 21, 153 (2009).

    Article  Google Scholar 

  29. G.M. Ritcey and A.W. Ashbrook, Solvent Extraction Part I (Amsterdam: Elsevier, 1984).

    Google Scholar 

  30. R. Sattar, S. Ilyas, H.N. Bhatti, and A. Ghaffar, Sep. Purif. Technol. 209, 725 (2019).

    Article  Google Scholar 

  31. Y. Marcus, Chem. Rev. 63, 139 (1963).

    Article  Google Scholar 

  32. A. Zouhri, B. Ernst, and M. Burgard, Sep. Sci. Technol. 34, 1891 (1999).

    Article  Google Scholar 

  33. A. Ouejhani, M. Dachraoui, G. Lalleve, and J.F. Fauvarque, Anal. Sci. 19, 1499 (2003).

    Article  Google Scholar 

  34. A.H. Al-Shukrawi, D.H. Fadhel, A.A. Rashad, and N.H. Al-Alamy, J. Chem. Eng. Process Technol. 8, 359 (2017). https://doi.org/10.4172/2157-7048.1000359.

    Article  Google Scholar 

  35. W. Zhang, J. Liu, Z. Ren, C. Du, and J. Ma, J. Chem. Eng. Data 52, 2220 (2007).

    Article  Google Scholar 

  36. P. Pathak and S. Sharma, J. Environ. Eng. 144, 0401819 (2018). https://doi.org/10.1061/(asce)ee.1943-7870.0001454.

    Article  Google Scholar 

  37. R.R. Srivastava, M.-S. Kim, and J.-C. Lee, J. Chem. Technol. Biotechnol. 90, 1752 (2015).

    Article  Google Scholar 

  38. M.A. Muhsan, S. Ilyas, H.A. Cheema, S. Masud, and N. Shabbir, Sep. Purif. Technol. 186, 90 (2017).

    Article  Google Scholar 

  39. M. Ardestani and F. Karpasand, Sci. Eng. Compos. Mater. 25, 739 (2018).

    Article  Google Scholar 

  40. H. Lopez-Gonzalez, J.R. Peralta-Videa, E.T. Romero-Guzman, A. Rojas-Hernandez, and J.L. Gardea-Torresdey, J. Solut. Chem. 39, 522 (2010).

    Article  Google Scholar 

  41. S. Kalidhasan and N. Rajesh, J. Hazard. Mater. 170, 1079 (2009).

    Article  Google Scholar 

  42. S. Kalidhasan, M. Ganesh, S. Sricharan, and N. Rajesh, J. Hazard. Mater. 165, 886 (2009).

    Article  Google Scholar 

  43. A. Senol, Sep. Purif. Technol. 36, 63 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant No. 2019H1D3A2A02101993). Sadia Ilyas is grateful to the NRF for providing the Brain Pool Scientists award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajiv Ranjan Srivastava, Sadia Ilyas or Hyunjung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R.R., Ilyas, S., Kim, H. et al. Liquid–Liquid Extraction and Reductive Stripping of Chromium to Valorize Industrial Effluent. JOM 72, 839–846 (2020). https://doi.org/10.1007/s11837-019-03948-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03948-0

Navigation