Skip to main content
Log in

The Deep Deoxygenation Behavior of Fine Hydrogenated Ti Alloy Powders

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this work, a novel thermochemical method was introduced to produce fine titanium alloy powders with low oxygen content by utilizing hydrogenated titanium alloy powders mixed with Ca and CaCl2 powders. The stability of Ti-O solid solution decreased when the hydrogen was released in situ during the thermochemical process. Hydrogen could increase the oxygen potentials of Ti-O solid solution alloys, and the average particle size could be mainly preserved at 35.23 μm after the heat treatment. Experimental results reveal that the oxygen content in final products could be remarkably decreased to 0.146 wt.% at low temperature of 680°C compared to the results of 0.67 wt.% when utilizing pre-dehydrogenated powders instead. Moreover, hydrogen can be easily reduced by heat treatment, and the experimental results show the remaining hydrogen concentration is 0.078 wt.%. This work is expected to provide a one-step solution by integrating the dehydrogenation with the deoxygenation process in to produce fine metal powders with low oxygen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Chen, Y. Yamamoto, W.H. Peter, S.B. Gorti, A.S. Sabau, M.B. Clark, S.D. Nunn, J.O. Kiggans, C.A. Blue, J.C. Williams, B. Fuller, and K. Akhtar, Powder Technol. 214, 194. (2011).

    Article  Google Scholar 

  2. A.T. Sidambe, I.A. Figueroa, H.G.C. Hamilton, and I. Todd, J. Mater. Process. Technol. 212, 1591. (2012).

    Article  Google Scholar 

  3. S. Yang, J.N. Gwak, T.S. Lim, Y.J. Kim, and J.Y. Yun, Mater. Trans. 54, 2313. (2013).

    Article  Google Scholar 

  4. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Appl. Phys. Rev. 2, 041101. (2015).

    Article  Google Scholar 

  5. H.H. Nersisyan, B.U. Yoo, Y.M. Kim, H.T. Son, K.Y. Lee, and J.H. Lee, Chem. Eng. J. 304, 232. (2016).

    Article  Google Scholar 

  6. C. Zheng, T. Ouchi, A. Iizuka, Y.K. Taninouchi, and T.H. Okabe, Metall. Mater. Trans. B 50, 622. (2019).

    Article  Google Scholar 

  7. S. Liu, Z. Zhang, S. Xiao, and Y. Chen, J. Alloys Compd. 781, 1139. (2019).

    Article  Google Scholar 

  8. M. Yan, W. Xu, M.S. Dargusch, H.P. Tang, M. Brandt, and M. Qian, Powder Metall. 57, 251. (2014).

    Article  Google Scholar 

  9. M.L. Wasz, F.R. Brotzen, R.B. McLellan, and A.J. Griffin, Inter. Mater. Rev. 41, 1. (1996).

    Article  Google Scholar 

  10. J.M. Oh, B.G. Lee, S.W. Cho, S.W. Lee, G.S. Choi, and J.W. Lim, Met. Mater. Int. 17, 733. (2011).

    Article  Google Scholar 

  11. ASTM F2924-14, West Conshohocken, PA: ASTM, 2014.

  12. J.W. Lim, J.M. Oh, B.K. Lee, C.Y. Suh, S.W. Cho, US patent, 8449813 B1, 2013.

  13. J.M. Oh, B.K. Lee, C.Y. Suh, S.W. Cho, and J.W. Lim, Powder Metall. 55, 402. (2012).

    Article  Google Scholar 

  14. T.H. Okabe, T. Oishi, and K. Ono, Metall. Trans. B 23, 583. (1992).

    Article  Google Scholar 

  15. R.O. Suzuki, M. Aizawa, and K. Ono, J. Alloys Compd. 288, 173. (1999).

    Article  Google Scholar 

  16. T.H. Okabe, T. Oishi, and K. Ono, J. Alloys Compd. 184, 43. (1992).

    Article  Google Scholar 

  17. J.M. Oh, K.M. Roh, B.K. Lee, C.Y. Suh, W. Kim, H. Kwon, and J.W. Lim, J. Alloys Compd. 593, 61. (2014).

    Article  Google Scholar 

  18. J.M. Oh, C.I. Hong, and J.W. Lim, Adv. Powder Technol. 30, 1. (2019).

    Article  Google Scholar 

  19. C.I. Hong, J.M. Oh, J. Park, J.M. Yoon, and J.W. Lim, Adv. Powder Technol. 29, 1640. (2018).

    Article  Google Scholar 

  20. T.H. Okabe, T. Oda, and Y. Mitsuda, J. Alloys Compd. 364, 156. (2004).

    Article  Google Scholar 

  21. B. Xu, B. Yang, J. Jia, D. Liu, H. Xiong, and Y. Deng, J. Alloys Compd. 576, 208. (2013).

    Article  Google Scholar 

  22. R.O. Suzuki, K. Teranuma, and K. Ono, Metall. Mater. Trans. B 34B, 287. (2003).

    Article  Google Scholar 

  23. R.O. Suzuki, and S. Inoue, Metall. Mater. Trans. B 34B, 277. (2003).

    Article  Google Scholar 

  24. R.O. Suzuki, JOM 59, 68. (2007).

    Article  Google Scholar 

  25. J. Jia, B. Xu, B. Yang, D. Wang, and D. Liu, JOM 65, 630. (2013).

    Article  Google Scholar 

  26. Y. Zhang, Z.Z. Fang, P. Sun, T. Zhang, Y. Xia, C. Zhou, and Z. Huang, J. Am. Chem. Soc. 138, 6916. (2016).

    Article  Google Scholar 

  27. Y. Zhang, Z.Z. Fang, Y. Xia, P. Sun, B.V. Devener, M. Free, H. Lefler, and S. Zheng, Chem. Eng. J. 308, 299. (2017).

    Article  Google Scholar 

  28. Y. Xia, Z.Z. Fang, D. Fan, P. Sun, Y. Zhang, and J. Zhu, Int. J. Hydrogen Energy 43, 11939. (2018).

    Article  Google Scholar 

  29. L. Luo, Y. Su, J. Guo, and H. Fu, J. Alloys Compd. 425, 140. (2006).

    Article  Google Scholar 

  30. R. Sridharan, K.H. Mahendran, T. Gnanasekaran, G. Periaswami, U.V. Varadaraju, and C.K. Mathews, J. Nucl. Mater. 223, 72. (1995).

    Article  Google Scholar 

  31. J. Yang, M. Kuwabara, T. Sawada, and M. Sano, ISIJ Int. 46, 1130. (2006).

    Article  Google Scholar 

  32. H. Wang, Z. Fang, and K. Hwang, Metall. Mater. Trans. A 42, 3534. (2011).

    Article  Google Scholar 

  33. M. Nie, Y. Yang, Z. Zhang, C. Yan, X. Wang, H. Li, and W. Dong, Chem. Eng. J. 246, 373. (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC no. 11535003) and the Fund of State Key Laboratory of Multiphase Complex Systems (no. Y525021140).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Hu or Fangli Yuan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Hou, G., Jin, H. et al. The Deep Deoxygenation Behavior of Fine Hydrogenated Ti Alloy Powders. JOM 73, 1188–1195 (2021). https://doi.org/10.1007/s11837-021-04571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04571-8

Navigation