Skip to main content

Advertisement

Log in

Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A concept for calciothermic direct reduction of titanium dioxide in molten CaCl2 is proposed and experimentally tested. This production process consists of a single cell, where both the thermochemical reaction of the calciothermic reduction and the electrochemical reaction for recovery of the reducing agent, Ca, coexist in the same molten CaCl2 bath. A few molar percentages of Ca dissolve in the melt, which gives the media a strong reducing power. Using a carbon anode and a Ti basket-type cathode in which anatase-type TiO2 powder was filled, a metallic titanium sponge containing 2000 ppm oxygen was produced after 10.8 ks at 1173 K in the CaCl2 bath. The optimum concentration of CaO in the molten CaCl2 was 0.5 to 1 mol pct, to shorten the operating time and to achieve a lower oxygen content in Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kroll: Trans. Electrochem. Soc., 1940, vol. 78, pp. 35–47.

    Google Scholar 

  2. K. Ono: Titanium Jpn., 2000, vol. 48 (1), pp. 13–15.

    Google Scholar 

  3. K. Ono and R.O. Suzuki: Proc. Symp. on Emerging Technologies for Metals Extraction, EPD Congr. 2001, 2001 TMS Annual Meeting, New Orleans, LA, P.R. Taylor, ed., TMS, Warrendale, PA, 2001, pp. 79–88.

    Google Scholar 

  4. K. Ono and R.O. Suzuki: Mater. Jpn., 2002, vol. 41 (1), pp. 28–31.

    CAS  Google Scholar 

  5. K. Ono and R.O. Suzuki: JOM Mem. J. Min. Met. Mater. Soc., 2002, vol. 54 (2), pp. 59–61.

    CAS  Google Scholar 

  6. K. Ono and R.O. Suzuki: Titanium Jpn., 2002, vol. 50 (2), pp. 105–08.

    CAS  Google Scholar 

  7. R.O. Suzuki and S. Inoue: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 277–85.

    CAS  Google Scholar 

  8. R.O. Suzuki and K. Ono: Proc. 13th Int. Symp. on Molten Salt, H.C. Delong, R.W. Bradshaw, M. Matsunaga, G.R. Stafford, and P.C. Trulove, eds., The Electrochemical Society, Penningston, NJ, 2002, pp. 810–21.

    Google Scholar 

  9. A. Roine: HSC Chemistry for Windows, ver. 4.1, Outokump Research Oy, Pori, Finland, 2000.

    Google Scholar 

  10. H. Okamoto: Desk Handbook Phase Diagrams for Binary Alloys, ASM INTERNATIONAL, Materials Park, OH, 2000.

    Google Scholar 

  11. O. Kubaschewski and W.A. Dench: J. Inst. Met., 1953, vol. 82, pp. 87–91.

    CAS  Google Scholar 

  12. K. Ono, T.H. Okabe, M. Ogawa, and R.O. Suzuki: Tetsu-to-Hagané, 1990, vol. 76 (4), pp. 568–75.

    CAS  Google Scholar 

  13. W. Kroll: Z. Anorg. Allgem. Chem., 1937, vol. 234, pp. 42–50.

    Article  CAS  Google Scholar 

  14. S. Miyazaki, T. Oishi, and K. Ono: Proc. 5th. World Conf. on Titanium, Munich, Germany, Sept. 10–14, 1984, G. Lütjering, U. Zwicker, and W. Bunk, eds., Deutsche Geselschaft für Metallk., Oberursel, Germany, 1985, pp. 2657–63.

    Google Scholar 

  15. K. Ono and S. Miyazaki: J. Jpn. Inst. Met., 1985, vol. 49 (10), pp. 871–75.

    CAS  Google Scholar 

  16. R.O. Suzuki, M. Ogawa, T. Oishi, and K. Ono: Proc. 6th World Conf. on Titanium 1988, Cannes, France, 1988, Soc. Franc. Metall., Paris, 1989, vol. II, pp. 701–06.

    Google Scholar 

  17. T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono: Mater: Trans. JIM, 1991, vol. 32 (5), pp. 485–88.

    CAS  Google Scholar 

  18. H. Niiyama, Y. Tajima, F. Tsukihashi, and N. Sano: J. Less-Common Met., 1991, vol. 169, pp. 209–16.

    Article  CAS  Google Scholar 

  19. I. Obinata, Y. Takeuchi, and S. Saikawa: Trans. ASM, 1960, vol. 52, pp. 1072–83.

    CAS  Google Scholar 

  20. P.P. Alexander: U.S. Patent 2.038.402, 1936; U.S. Patent 2.043.363, 1936; and U.S. Patent 2.082.134, 1937.

  21. B. Neumann, C. Kröger, and H. Jüttner: Z. Elektrochem., 1935, vol. 41 (10), pp. 725–36.

    CAS  Google Scholar 

  22. W.D. Threadgill: J. Electrochem. Soc., 1965, vol. 112 (6), pp. 632–33.

    Article  CAS  Google Scholar 

  23. D.A. Wenz, I. Johnson, and R.D. Wolson: J. Chem. Eng. Data, 1969, vol. 14 (2), pp. 250–52.

    Article  CAS  Google Scholar 

  24. G.S. Perry and L.G. MacDonald: J. Nucl. Mater., 1985, vol. 130, pp. 234–41.

    Article  CAS  Google Scholar 

  25. T. Ohshima, R.O. Suzuki, T. Yagura, and K. Ono: Proc. 2000 Powder Metallurgy World Congr., Kyoto, Japan, Nov. 13–18, 2000, K. Kosuge and H. Nagai, eds., Japan Society Powder and Powder Metallurgy, Tokyo, 2001, pp. 532–35.

    Google Scholar 

  26. W.Z. Wade and T. Wolf: J. Nucl. Sci. Technol., 1969, vol. 6, pp. 402–07.

    Article  Google Scholar 

  27. R.A. Sharma: J. Met., 1987, vol. 2, pp. 33–37.

    Google Scholar 

  28. R.A. Sharma and R.N. Seefruth: J. Electrochem. Soc., 1988, vol. 135 (1), pp. 66–71.

    Article  CAS  Google Scholar 

  29. R.A. Sharma and R.N. Seefruth: Metall. Trans. B, 1989, vol. 20B (6), pp. 805–13.

    CAS  Google Scholar 

  30. Metals Databook, Japan Institute of Metals ed., 2nd ed., Maruzen, Tokyo, 1984, pp. 9, 15, 34, and 68.

  31. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee: Thermal Expansion, Nonmetallic Solid, IFI/Plenum, New York, NY, 1977, pp. 49 and 392–97.

    Google Scholar 

  32. D.T. Peterson and J.A. Hinkebein: J. Phys. Chem., 1959, vol. 63, pp. 1360–63.

    Article  CAS  Google Scholar 

  33. R.A. Sharma: J. Phys. Chem., 1970, vol. 74 (22), pp. 3896–900.

    Article  CAS  Google Scholar 

  34. V. Dosaj, C. Aksaranan, and D.R. Morris: J. Chem. Soc. Faraday Trans., 1975, vol. 71, pp. 1083–98.

    Article  CAS  Google Scholar 

  35. H. Fischbach: Steel Res., 1985, vol. 56 (7), pp. 365–68.

    CAS  Google Scholar 

  36. L.-I. Staffansson and D. Sichen: Scand. J. Metall., 1992, vol. 21, pp. 165–71.

    CAS  Google Scholar 

  37. A.I. Zaitsev and B.M. Mogutnov: Metall. Mater. Trans., B, 2001, vol. 32B, pp. 305–11.

    CAS  Google Scholar 

  38. K.M. Axler and G.L. DePoorter: Mater. Sci. Forum, 1991, vol. 73–75, pp. 19–24.

    Article  Google Scholar 

  39. P.D. Ferro, B. Mishra, D.L. Olson, and W.A. Averill: Waste Management, 1997, vol. 17, pp. 451–61.

    Article  CAS  Google Scholar 

  40. P.D. Ferro, B. Mishra, D.L. Olson, and W.A. Averill: Trans. Ind. Inst. Met., 1998, vol. 51, pp. 69–77.

    CAS  Google Scholar 

  41. P.D. Ferro, B. Mishra, and W.A. Averill: in Light Metals 1991, E.L. Rooy, ed., TMS, Warrendale, PA, 1990, pp. 1197–1203.

    Google Scholar 

  42. G.J. Kipouros and R.A. Sharma: J. Electrochem. Soc., 1990, vol. 137, pp. 3333–38.

    Article  CAS  Google Scholar 

  43. M. Kunitomi: J. Chem. Soc. Jpn., Pure Chem. Sec., 1950, vol. 71, pp. 40–43.

    CAS  Google Scholar 

  44. R. Lorenz: Trans. Am. Electrochem. Soc., 1904, vol. 6, pp. 160–61.

    CAS  Google Scholar 

  45. H.-H. Emons and D. Richter: Z. Anorg. Allg. Chem., 1965, vol. 339, pp. 91–98.

    Article  CAS  Google Scholar 

  46. A.S. Dworkin, H.R. Bronstein, and M.A. Bredig: J. Phys. Chem., 1966, vol. 70 (7), pp. 2384–88.

    CAS  Google Scholar 

  47. T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono: Tetsu-to-Hagané, 1991, vol. 77 (1), pp. 93–99.

    CAS  Google Scholar 

  48. T.H. Okabe, T. Oishi, and K. Ono: J. Alloys Compounds, 1992, vol. 184, pp. 43–56.

    Article  CAS  Google Scholar 

  49. T.H. Okabe, M. Nakamura, T. Ueki, T. Oishi, and K. Ono: Bull. Jpn. Inst. Met., 1992, vol. 31 (4), pp. 315–17.

    Google Scholar 

  50. T.H. Okabe, T.N. Deura, T. Oishi, K. Ono, and D.R. Sadoway: J. Alloys Compounds, 1996, vol. 237, pp. 150–54.

    Article  CAS  Google Scholar 

  51. R.O. Suzuki, M. Aizawa, and K. Ono: J. Alloys Compounds, 1999, vol. 288, pp. 173–82.

    Article  CAS  Google Scholar 

  52. T.H. Okabe, M. Nakamura, T. Oishi, and K. Ono: Metall. Trans. B, 1993, vol. 24B, pp. 449–56.

    CAS  Google Scholar 

  53. K. Hirota, T.H. Okabe, F. Saito, Y. Waseda, and K.T. Jacob: J. Alloys Compounds, 1999, vol. 282, pp. 101–08.

    Article  CAS  Google Scholar 

  54. M. Maeda and A. McLean: ISS Trans., 1987, vol. 8, pp. 23–27.

    CAS  Google Scholar 

  55. M.E. Sibert, Q.H. McKenna, M.A. Steinberg, and E. Wainer: J. Electrochem. Soc., 1955, vol. 102 (5), pp. 252–62.

    Article  CAS  Google Scholar 

  56. S. Takeuchi and O. Watanabe: J. Jpn. Inst. Met., 1964, vol. 28 (9), pp. 549–54.

    CAS  Google Scholar 

  57. T. Oki and H. Inoue: Mem. Fac. Eng., Nagoya Univ., 1967, vol. 19 (1), pp. 164–66.

    CAS  Google Scholar 

  58. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    Article  CAS  Google Scholar 

  59. G.Z. Chen, D.J. Fray, and T.W. Farthing: Metall. Mater. Trans. B, 2001, vol. 32B (6), pp. 1041–52.

    Article  CAS  Google Scholar 

  60. D.J. Fray: JOM Mem. J. Min. Met. Mater. Soc., 2001, vol. 53 (10), pp. 26–31.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, R.O., Ono, K. & Teranuma, K. Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2 . Metall Mater Trans B 34, 287–295 (2003). https://doi.org/10.1007/s11663-003-0074-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-003-0074-1

Keywords

Navigation