Skip to main content
Log in

Nonlinear Thermo-Mechanical Full Coupling of Aluminum Oxide Particles Transport in Electrolytic Bath Using Lattice Boltzmann Method

  • Powder Materials for Energy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A three-dimensional numerical model has been developed to quantify the predominant phenomena roles on dynamics alumina particles between an electrolytic bath and the vicinity of gas bubbles. At the particle scale, the bath, regarded as turbulent flow, was modeled by a steady plane shear flow and solved using a lattice Boltzmann method. The coupling between the fluid and particle phases is carried out using an immersed boundary method to tackle the interface. This numerical scheme resolves the hydrodynamic perturbation induced by the alumina particles, and hence their interactions are described by Lagrangian particle tracking. The hydrodynamic effects combined with mechanical and thermal responses on the computation of the fluid system's stress intensity factors were investigated. An excellent convergence and accuracy were achieved for the transport and interaction of the alumina particle model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.A. Abdullah, and A. Al-Rashed, Int. J. Mech. Sci. 152, 328. (2019).

    Google Scholar 

  2. M. Sheikholeslami, S. Saleem, A. Shafee, Z. Li, and T. Hayat, Comput. Methods Appl. Mech. Eng. 349, 858. (2019).

    Article  Google Scholar 

  3. M. Griebel, T. Dornsheifer, and T. Neunhoeffer, Numerical Simulation in Fluid Dynamics: A Practical Introduction, 2nd edn. (SIAM, Philadelphia, 1997), pp 123–129

    Google Scholar 

  4. Z. Guo, C. Zheng, and B. Shi, Phys. Fluids 14, 2007. (2010).

    Article  Google Scholar 

  5. S.Q. Zhan, M. Li, J.M. Zhou, J.H. Yang, and Y.W. Zhou, Trans. Nonferrous Met. Soc. China 25, 1656. (2015).

    Google Scholar 

  6. R. K. Jain R.K., S. B. Tricklebank, B. J. Welch and D. J. Williams, Light Metals, ed. E. M. Adkins (TMS, Warrendale, PA, 1983), pp. 609-622.

  7. A. S. Bagshaw, G. Kuschel, M. P. Taylor, S. B. Tricklebank, and B. J. Welch, Light Metals, ed. E. M. Adkins (TMS, Warrendale, PA, 1985), pp. 649–659.

  8. R. Oedegaard, S. Roenning, S. Rolseth and J. Thonstad, Light Metals, ed. E. M. Adkins (TMS, Warrendale, PA, 1985), pp. 695–709.

  9. X. He, Int. J. Mod. Phys. C 08, 745. (1997).

    Article  Google Scholar 

  10. X. He, and L.S. Luo, J. Stat. Phys. 88, 944. (1997).

    Article  Google Scholar 

  11. X. He, and L.S. Luo, Phys. Rev. E 56, 6817. (1997).

    Google Scholar 

  12. X. He, L.S. Luo, and M. Dembo, J. Comput. Phys. 129, 363. (1996).

    Article  Google Scholar 

  13. S. Tao, Q. He, and B. Chen, Comput. Part. Mech. 6, 10. (2020).

    Google Scholar 

  14. M. Shuangshuang, H. Frissane, and L. Taddei, Comput. Part. Mech. 20, 339. (2020).

    Google Scholar 

  15. Z. Lei, C.R. Bradley, and A. Munjiza, Comput. Part. Mech. 20, 3452. (2020).

    Google Scholar 

  16. C. Peskin, Acta Numer. 11, 517. (2002).

    Article  Google Scholar 

  17. R. Mittal, and G. Iaccarino, Annu. Rev. Fluid Mech. 37, 261. (2005).

    Article  Google Scholar 

  18. Z.G. Feng, and E.E. Michaelides, J. Comput. Phys. 184(2), 628. (2004).

    Google Scholar 

  19. T.P. Fries, Int. J. Numer. Methods Eng. 75(5), 532. (2007).

    Google Scholar 

  20. P. Desjonqueres, A. Berlemont, and G. Gouesbet, J. Aerosol. Sci. 19, 1103. (1988).

    Article  Google Scholar 

  21. Q.Q. Lu, J.R. Fontaine, and G. Aubertin, Aerosol. Sci. Technol. 17(3), 169. (1992).

    Article  Google Scholar 

  22. J. Pozorski, and J.P. Minier, Int. J. Multiph. Flow 24, 945. (1998).

    Article  Google Scholar 

  23. M. Berardi, and L. Lopez, Appl. Math. Lett. 25(6), 999. (2012).

    Article  Google Scholar 

  24. P.O. Persson, and G. Strang, SIAM Rev. 46(2), 345. (2004).

    Article  Google Scholar 

  25. S. Geller, M. Krafczyk, J. Tolke, S. Turek, and J. Heron, Comput. Fluids 35, 897. (2006).

    Article  Google Scholar 

  26. J. Latt, D. Kontaxaskis, L. Chatagny, F. Muggli, and B. Choppard, Int. J. Mod. Phys. C 24(12), 1340009. (2013).

    Article  Google Scholar 

  27. W. Mulder, S. Osher, and J.A. Sethian, J. Comput. Phys. 100(2), 228. (1992).

    Article  Google Scholar 

  28. S. Chen, and G. Doolen, Ann. Rev. Fluid Mech. 30, 364. (1998).

    Article  Google Scholar 

  29. D.H. Rothman, and S. Zaleski, Rev. Mod. Phys. 66, 1417. (1994).

    Article  Google Scholar 

  30. D. Grunau, S. Chen, and K. Eggert, Phys. Fluids A 5, 2557. (1993).

    Article  Google Scholar 

  31. H. Haj-Hariri, Q. Shi, and A. Borhan, Phys. Fluids 6, 2556. (1994).

    Article  Google Scholar 

  32. P.L. Bhatnagar, E.P. Gross, and M. Krook, Phys. Rev. 94, 511. (1954).

    Article  Google Scholar 

  33. Y.H. Qian, D. d’Humières, and P. Lallemand, Europhys. Lett. 17(6), 484. (1992).

    Article  Google Scholar 

  34. I. Ginzbourg, and P.M. Adler, J. Phys. II 4, 191. (1994).

    Google Scholar 

  35. A.J.C. Ladd, J. Fluid Mech. 271, 285. (1994).

    Article  MathSciNet  Google Scholar 

  36. A.J.C. Ladd, J. Fluid Mech. 271, 311. (1994).

    Article  MathSciNet  Google Scholar 

  37. I. Ginzburg, and K. Steiner, Philos. Trans. R. Soc. A 360, 466. (2002).

    Article  Google Scholar 

  38. G.R. McNamara, A.L. Garcia, and B. Alder, J. Stat. Phys. 81, 395. (1995).

    Article  Google Scholar 

  39. L. Giraud, D. d’Humières, and P. Lallemand, Int. J. Mod. Phys. C 8, 805. (1997).

    Article  Google Scholar 

  40. M. Bouzidi, M. Firdaouss, and P. Lallemand, Bound. Phys. Fluids 13, 3452. (2001).

    Article  Google Scholar 

  41. P. Lallemand, and L.S. Luo, Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. 61, 6562. (2000).

    Article  Google Scholar 

  42. C.S. Peskin, J. Comput. Phys. 184(2), 252. (1977).

    Article  MathSciNet  Google Scholar 

  43. X.D. Niu, C. Shu, Y.T. Chew, and Y. Peng, Phys. Lett. A 354(3), 182. (2006).

    Article  Google Scholar 

  44. Q. Wang, L. Gosselin, and M. Fafard, Metall. Trans. B 47(2), 1228. (2016).

    Article  Google Scholar 

  45. J. Gerlach, U. Hennig, and K. Kern, Metall. Trans. B 5, 83. (1975).

    Article  Google Scholar 

  46. M. Sun, B. Li, and L. Li, Metall. Trans. B 48(6), 3161. (2017).

    Article  Google Scholar 

  47. V.N. Prakash, M.J. Martınez, L.V. Wijngaarden, E. Mancilla, and Y. Tagawa, J. Fluid Mech. 25, 190. (2016).

    Google Scholar 

  48. A.A. Kulkarni, and J.B. Joshi, Ind. Eng. Chem. Res. 44(16), 5873. (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports by Northeastern University and the Institute of Light Metals Metallurgy (ILMM), Shenyang, P.R. China, are gratefully acknowledged. Dr. Diop is thankful to Professor L.S. Luo for helpful discussions on the lattice-based method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouhamadou A. Diop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diop, M.A., Shi, Z. & Fafard, M. Nonlinear Thermo-Mechanical Full Coupling of Aluminum Oxide Particles Transport in Electrolytic Bath Using Lattice Boltzmann Method. JOM 73, 823–833 (2021). https://doi.org/10.1007/s11837-020-04545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04545-2

Navigation