Skip to main content
Log in

Effect of Slotted Anode on Gas Bubble Behaviors in Aluminum Reduction Cell

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the aluminum reduction cells, gas bubbles are generated at the bottom of the anode which eventually reduces the effective current contact area and the system efficiency. To encourage the removal of gas bubbles, slotted anode has been proposed and increasingly adopted by some industrial aluminum reduction cells. Nonetheless, the exact gas bubble removal mechanisms are yet to be fully understood. A three-dimensional (3D) transient, multiphase flow mathematical model coupled with magnetohydrodynamics has been developed to investigate the effect of slotted anode on the gas bubble movement. The Eulerian volume of fluid approach is applied to track the electrolyte (bath)–molten aluminum (metal) interface. Meanwhile, the Lagrangian discrete particle model is employed to handle the dynamics of gas bubbles with considerations of the buoyancy force, drag force, virtual mass force, and pressure gradient force. The gas bubble coalescence process is also taken into account based on the O’Rourke’s algorithm. The two-way coupling between discrete bubbles and fluids is achieved by the inter-phase momentum exchange. Numerical predictions are validated against the anode current variation in an industrial test. Comparing the results using slotted anode with the traditional one, the time-averaged gas bubble removal rate increases from 36 to 63 pct; confirming that the slotted anode provides more escaping ways and shortens the trajectories for gas bubbles. Furthermore, the slotted anode also reduces gas bubble’s residence time and the probability of coalescence. Moreover, the bubble layer thickness in aluminum cell with slotted anode is reduced about 3.5 mm (17.4 pct), so the resistance can be cut down for the sake of energy saving and the metal surface fluctuation amplitude is significantly reduced for the stable operation due to the slighter perturbation with smaller bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Thonstad, H. D. Kleinschrodt, H. Vogt: Light Metals, TMS, Warrendale, PA, 1997, pp. 427-432.

    Google Scholar 

  2. T. M. Hyde, B. J. Welch: Light Metals, TMS, Warrendale, PA, 1997, pp. 333-340.

    Google Scholar 

  3. Q. Wang, B. K. Li, Z. He, N. X. Feng: Metall. Mater. Trans. B, 2014, vol. 45, pp. 272-294.

    Article  Google Scholar 

  4. J. P. Peng, Y. F. Tian, N. X. Feng, Y. W. Wang, Z. Q. Wang: J. Mater. Metall., 2009, vol. 8, pp. 165-171.

    Google Scholar 

  5. N.X. Feng: Low energy consumption aluminum reduction cell with novel cathode, China, ZL 200710010523.4, 2008.

  6. G. Bearne, D. Gadd, S. Lix: Light Metals, TMS, Warrendale, PA, 2007, pp. 305-310.

    Google Scholar 

  7. W. E. Haupin: JOM, 1971, vol. 23, pp. 46-49.

    Article  Google Scholar 

  8. S. Fortin, M. Gerhardt, A. J. Gesing: Light Metals, TMS, Warrendale, PA, 1984, pp. 721-741.

    Google Scholar 

  9. X. W. Wang, G. Tarcy, S. Whelan, S. Porto: Light Metals, TMS, Warrendale, PA, 2007, pp. 299-304.

    Google Scholar 

  10. W. Yang, M. A. Cooksey: Light Metals, TMS, Warrendale, PA, 2007, pp. 451-456.

    Google Scholar 

  11. Y. F. Wang, L. F. Zhang, X. J. Zuo: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1051-1064.

    Article  Google Scholar 

  12. S. Yang, H. L. Zhang, Y. J. Xu, H. H. Zhang, Z. Zou, J. Li, Y. Q. Lai: J. Cent. South Univ., 2012, vol. 43, pp. 4617-4625.

    Google Scholar 

  13. S.Q. Zhan, M. Li, J. M. Zhou: J. Cent. South Univ., 2015, vol. 22, pp. 2482-2492.

    Article  Google Scholar 

  14. Y. L. Wang, J. Tie, G. F. Tu, S. C. Sun, R. T. Zhao, and Z. F. Zhang: Trans. Nonferrous Met. Soc. China, 2015, 25, pp. 335-344.

    Article  Google Scholar 

  15. L. I. Kiss, S. Ponesak, J. Antille: Light Metals, TMS, Warrendale, PA, 2005, pp. 559-564.

    Google Scholar 

  16. M. Alam, W. Yang, K. Mohanarangam, G. Brooks, and Y. S. Morsi: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1155-1165.

    Article  Google Scholar 

  17. Y. Feng, M. P. Schwarz, W. Yang, and M. Cooksey: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1959-81.

    Article  Google Scholar 

  18. K. Vekony and L. I. Kiss: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1086-1097.

    Article  Google Scholar 

  19. A. L. Perron, L. K. Kiss, and S. Poncsak: J. appl. Electrochem., 2006, vol. 36, pp. 1381-1389.

    Article  Google Scholar 

  20. A. L. Perron, L. K. Kiss, and S. Poncsak: J. appl. Electrochem., 2007, vol. 37, pp. 303-310.

    Article  Google Scholar 

  21. T.M. Hyde and B.J. Welch: Royal Australian Chemical Institute, 1992, pp. 161–168.

  22. Z.B. Zhao, Z.W. Wang, B.L. Gao, Y.Q. Feng, Z.N. Shi, and X.W. Hu: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1-14.

    Google Scholar 

  23. J. U. Brackbill, D. B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335-354.

    Article  Google Scholar 

  24. S. A. Morsi and A. J. Alexander: J. Fluid Mech., 1972, vol. 55, pp. 193–208.

    Article  Google Scholar 

  25. P.J. O’rourke: PhD Thesis. Princeton University, Princeton, New Jersey, 1981.

  26. L. M. Li, and B. K. Li: JOM, 2016, vol. 68, pp. 2160-2169.

    Article  Google Scholar 

  27. J. Li, Y. J. Xu, and H. L. Zhang, Y. Q. Lai: Int. J. Multiphase Flow, 2011, vol. 37, pp. 46-54.

    Article  Google Scholar 

  28. A. Solheim, S. T. Johansen, and S. Rolseth: J. Appl. Electrochem., 1989, vol. 19, pp. 703-712.

    Article  Google Scholar 

  29. M. Alam, Y. Morsi, and W. Yang: Light metals, TMS, Warrendale, PA, 2013, pp. 591-596.

    Google Scholar 

  30. S. Poncsak, L.K. Kiss, and D. Toulouse: Light Metals, 2006, pp. 457-462.

  31. H. L. Zhang, T. S. Li, and J. Li: JOM, 2017, 69, pp. 292-300.

    Article  Google Scholar 

  32. D. S. Severo, A. F. Schneider, and E. C. Pinto: Light Metals, TMS, Warrendale, PA, 2005.

    Google Scholar 

  33. O. Zikanov, A. Thess, and P. A. Davidson: Metall. Mater. Trans. B, 2000, vol. 31, pp. 1541-1550.

    Article  Google Scholar 

  34. H.S. Li, X. Cao, and Y.F. Tian: Nonferrous metals industry conference on low carbon development, 2010, pp. 22–27.

Download references

Acknowledgments

The authors wish to thank National Natural Science Foundation of China (No. 51434005) and National Natural Science Foundation of China (No. 50934005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baokuan Li.

Additional information

Manuscript submitted January 17, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Li, B., Li, L. et al. Effect of Slotted Anode on Gas Bubble Behaviors in Aluminum Reduction Cell. Metall Mater Trans B 48, 3161–3173 (2017). https://doi.org/10.1007/s11663-017-1065-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1065-y

Keywords

Navigation