Skip to main content
Log in

Double diffusive convective transport and entropy generation in an annular space filled with alumina-water nanoliquid

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Many of the engineering/industrial applications involving the energy transport undergoes entropy generation which is unavoidable and this leads to degradation of system efficiency. Several researchers working in this field are exploring new ways to minimize the entropy generation so that the efficiency of the system could be enhanced. Motivated by these applications, the current article scrutinizes the rate of entropy generation along with thermal and solutal transport resulting from double-diffusive convective phenomenon in a nanoliquid-filled annular enclosure. Along vertical surfaces of the annulus, the uniform temperature and concentration conditions are specified, while the upper and lower boundaries are maintained as insulated and impermeable. The set of non-linear coupled governing equations in vorticity-stream function form supported by related initial and boundary conditions are computed numerically using time-splitting technique. The influence of various controlling parameters namely the buoyancy ratio (\(-5 \le N \le 5\)), Lewis number (\(0.5\le {Le} \le 2\)), aspect ratio (\(0.5\le {Ar} \le 2\)) and nanoparticle volume fraction (\(0\le \phi \le 0.05\)) on fluid movement, temperature, concentration and entropy production are scrutinized and variation in thermal and solutal dissipation rates, entropy production and Bejan number are graphically illustrated and are discussed with physical interpretation. Through the vast range of computational experiments, it has been found that the quantity of generated entropy in an enclosure is greater during aided flow compared to that of opposing case. Further, it has also been found that higher thermal and solutal performance rates with minimal loss of system energy (entropy generation) could be achieved with a shallow annulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. H. Beji, R. Bennacer, R. Duval, P. Vasseur, Numer. Heat Transf. Part A 36, 153–170 (1999)

    Article  ADS  Google Scholar 

  2. M. Marcoux, M.C. Charrier-Mojtabi, M. Azaiez, Int. J. Heat Mass Transf. 42, 2313–2325 (1999)

    Article  Google Scholar 

  3. S. Chen, J. Tolke, M. Krafczyk, Int. J. Heat Fluid Flow 31, 217–226 (2010)

    Article  Google Scholar 

  4. M. Venkatachalappa, Y. Do, M. Sankar, Int. J. Eng. Sci. 49, 262–278 (2011)

    Article  Google Scholar 

  5. M. Sankar, Y. Park, J.M. Lopez, Y. Do, Transp. Porous Media 91, 753–775 (2012)

    Article  Google Scholar 

  6. S.U.S. Choi, J. A. Eastman, ASME Int. Mech. Eng. Congress Expos. (1995)

  7. N. Putra, W. Roetzel, S.K. Das, Heat Mass Transf. 39, 775–784 (2003)

    Article  ADS  Google Scholar 

  8. O. Abouali, A. Falahatpisheh, Heat Mass Transf. 46, 15–23 (2009)

    Article  ADS  Google Scholar 

  9. F. Mabarek-Oudina, Heat Transf.-Asian Res. 48, 135–147 (2019)

    Article  Google Scholar 

  10. S.A. Khan, M.A. Siddiqui, Heat Transf.-Asian Res. 49, 1458–1490 (2020)

    Article  Google Scholar 

  11. N.K. Reddy, M. Sankar, J. Phys: Conf. Ser. 1597, 012055 (2021)

    Google Scholar 

  12. N.K. Reddy, H.A.K. Swamy, M. Sankar, Eur. Phys. J.: Special Topics 230, 1213–1225 (2021)

    ADS  Google Scholar 

  13. M. Sankar, N.K. Reddy, Y. DO, Sci. Rep. 11, 17122 (2021)

    Article  ADS  Google Scholar 

  14. C.J. Ho, M.W. Chen, Z.W. Li, Int. J. Heat Mass Transf. 51, 4506–4516 (2008)

    Article  Google Scholar 

  15. J.A. Esfahani, V. Bordbar, J. Nanotechnol. Eng. Med. 2, 021002 (2011)

    Article  Google Scholar 

  16. S. Parvin, R. Nasrin, M.A. Alim, N.F. Hossain, Heat Transf.-Asian Res. 41, 484–497 (2012)

    Article  Google Scholar 

  17. S. Parvin, R. Nasrin, M.A. Alim, N.F. Hossain, Procedia Eng. 56, 480–488 (2013)

    Article  Google Scholar 

  18. A.A.A. Arani, E. Kakoli, N. Hajialigol, J. Mech. Sci. Technol. 28, 4681–4691 (2014)

    Article  Google Scholar 

  19. M. Dastmalchi, G.A. Sheikhzadeh, A.A.A. Arani, Int. J. Therm. Sci. 95, 88–98 (2015)

    Article  Google Scholar 

  20. S. Chen, B. Yang, K.H. Luo, X. Xiong, C. Zheng, Int. J. Heat Mass Transf. 95, 1070–1083 (2016)

    Article  Google Scholar 

  21. P. Nithish, K. Murugesan, V. Koushik, Ann. Chim. - Sci. Mat. 42, 589–612 (2018)

    Google Scholar 

  22. B. He, S. Lu, D. Gao, W. Chen, X. Li, Int. J. Mech. Sci. 161–162, 105003 (2019)

    Article  Google Scholar 

  23. S. Akram, Q. Afzal, Eur. Phys. J. Plus 135, 857 (2020)

    Article  Google Scholar 

  24. D. Kushawaha, S. Yadav, D.K. Singh, Int. J. Mech. Sci. 191, 106085 (2021)

    Article  Google Scholar 

  25. M. Shahi, A.H. Mahmoudi, A.H. Raouf, Int. Commun. Heat Mass Transf. 38, 972–983 (2011)

    Article  Google Scholar 

  26. M. Alipanah, A.A. Ranjbar, E. Farnad, F. Alipanah, Heat Transf.-Asian Res. 44, 641–656 (2014)

    Article  Google Scholar 

  27. B. Warda, S. Amina, M. Souad, Eur. Phys. J. Appl. Phys. 78, 34802 (2017)

    Article  ADS  Google Scholar 

  28. A.A. Hussien, W. Al-Kouz, M.E. Hassan, A.A. Jamvekar, A.J. Chamkha, Eur. Phys. J. Appl. Phys. 136, 353 (2021)

    Google Scholar 

  29. M. Magherbi, N. Hidouri, H. Abbassi, A.B. Brahim, Int. J. Exergy 4, 227–252 (2007)

    Article  Google Scholar 

  30. N. Hidouri, M. Magherbi, H. Abbassi, A.B. Brahim, Progress Comput. Fluid Dyn. 7, 237–246 (2007)

    Article  Google Scholar 

  31. A. Mchirgui, N. Hidouri, M. Magherbi, A.B. Brahim, Transp. Porous Media 93, 223–240 (2012)

    Article  MathSciNet  Google Scholar 

  32. F. Oueslati, B. Ben-Beya, T. Lili, Alex. Eng. J. 52, 605–625 (2013)

    Article  Google Scholar 

  33. S. Chen, B. Yang, X. Xiao, C. Zheng, Int. J. Heat Mass Transf. 87, 447–463 (2015)

    Article  Google Scholar 

  34. S. Hussain, K. Mehmood, M. Sagheer, M. Yamin, Int. J. Heat Mass Transf. 122, 1283–1297 (2018)

    Article  Google Scholar 

  35. S. Arun, A. Satheesh, J. Taiwan Inst. Chem. Eng. 95, 155–173 (2019)

    Article  Google Scholar 

  36. R. Parveen, T.R. Mahapatra, Heliyon 5, e02496 (2019)

    Article  Google Scholar 

  37. M. Sankar, H.A.K. Swamy, Y. Do, S. Altmeyer, Heat Transf. 51, 1062–1091 (2022)

    Article  Google Scholar 

  38. H.A.K. Swamy, M. Sankar, N.K. Reddy, Int. J. Appl. Comput. Math. 8, 10 (2022)

    Article  Google Scholar 

  39. P. Besthapu, R.U. Haq, S. Bandari, Q.M. Al-Mdallal, J. Taiwan Inst. Chem. Eng. 71, 307–314 (2016)

    Article  Google Scholar 

  40. R.U. Haq, F. Shahzad, Results Phys. 7, 57–68 (2016)

    Article  ADS  Google Scholar 

  41. E.J. Elnajjar, Q.M. Al-Mdallal, F.M. Allan, J. Heat Transf. 138, 091008 (2016)

    Article  Google Scholar 

  42. Q.M. Al-Mdallal, F.M. Mahfouz, Int. J. Heat Mass Transf. 112, 147–157 (2017)

    Article  Google Scholar 

  43. H.V.R. Mittal, Q.M. Al-Mdallal, Int. J. Heat Mass Transf. 127, 357–374 (2018)

    Article  Google Scholar 

  44. S. Aman, I. Khan, Z. Ismail, M.Z. Salleh, Q.M. Al-Mdallal, Sci. Rep. 7, 2445 (2017)

    Article  ADS  Google Scholar 

  45. Q.M. Al-Mdallal, N. Indumathi, B. Ganga, A.K.A. Hakeem, Case Stud. Therm. Eng. 17, 100571 (2020)

    Article  Google Scholar 

  46. I.L. Animasaun, S. Yook, T. Muhammad, Q.M. Al-Mdallal, Surf. Interfaces 28, 101654 (2022)

    Article  Google Scholar 

  47. R. Nasrin, M.A. Alim, Heat Transf.-Asian Res. 42, 212–229 (2013)

    Article  Google Scholar 

  48. B. Mliki, M.A. Abbassi, A. Omri, Fluid Dyn. Mater. Process. 11, 87–114 (2015)

    Google Scholar 

  49. R.D. Jagadeesha, B.M.R. Prasanna, M. Sankar, Procedia Eng. 127, 1346–1353 (2015)

    Article  Google Scholar 

  50. B. Wang, Y. Liu, L. Li, Numer. Heat Transf. Part A 77, 343–360 (2020)

    Article  ADS  Google Scholar 

  51. A. Mchirgui, N. Hidouri, M. Magherbi, A.B. Brahim, Comput. Fluids 96, 105–115 (2014)

    Article  MathSciNet  Google Scholar 

  52. S.H. Hussain, Eng. Sci. Technol. Int. J. 19, 926–945 (2016)

    Google Scholar 

  53. G.H.R. Kefayati, Int. J. Heat Mass Transf. 116, 762–812 (2018)

    Article  Google Scholar 

  54. A. Ababaei, M. Abbaszadeh, A. Arefmanesh, A.J. Chamkha, Numer. Heat Transf. Part A 73, 702–720 (2018)

    Article  ADS  Google Scholar 

  55. M. Bouabid, N. Ghoudi, R. Bouabda, M. Magherbi, Arab. J. Sci. Eng. 45, 7499–7510 (2020)

    Article  Google Scholar 

  56. S. Marzougui, A. Mchirgui, M. Magherbi, Special Topics Rev. Porous Media: Int. J. 11, 189–202 (2020)

    Article  Google Scholar 

  57. R. Zhang, S. Aghakhani, A.H. Pordanjani, S.M. Vahedi, A. Shahsavar, M. Afrand, Eur. Phys. J. Plus 135, 184 (2020)

    Article  Google Scholar 

  58. S. Malik, A.K. Nayak, Int. J. Heat Mass Transf. 111, 329–45 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

HAKS would like to thank Presidency University and sincerely acknowledges the fellowship. MS and MSAM acknowledge the support from UTAS, Ibri, Oman under the Internal Research Funding via Project Number: DSR-IRPS-2021-22-PROP-1.

Author information

Authors and Affiliations

Authors

Contributions

MS identified the research problem and developed the numerical code, HAKS performed simulations and plotted the graphs. Analyses of the results and paper preparation have been carried out by HAKS and NKR. MS and MSAM Proofread the paper.

Corresponding author

Correspondence to M. Sankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swamy, H.A.K., Sankar, M., Reddy, N.K. et al. Double diffusive convective transport and entropy generation in an annular space filled with alumina-water nanoliquid. Eur. Phys. J. Spec. Top. 231, 2781–2800 (2022). https://doi.org/10.1140/epjs/s11734-022-00591-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00591-w

Navigation