Skip to main content
Log in

Microscale Observation via High-Speed X-ray Diffraction of Alloy 718 During In Situ Laser Melting

  • In Situ Synchrotron and Neutron Characterization of Additively Manufactured Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The laser melting process is accompanied by rapid evolution in temperature, phase, structure, and strain because of its high heating and cooling rates. In this study, the evolution of grains within a thin solid plate of Ni alloy 718 during laser processing was probed with in situ high-energy x-ray diffraction experiments. The high temporal and spatial resolution available in the measurement allowed us to study the rapid evolution of the melted region beneath the surface of the sample. The characterization of the evolution of secondary phases, i.e., Laves and carbide, was captured despite the weak diffracted peaks caused by small volume fractions. Thermal history was estimated based on changes in the lattice spacing from the thermal contraction upon cooling. The temporal variation in with azimuthal direction revealed the evolution in anisotropy of lattice spacing and thus of the mechanical state during laser processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2012).

    Article  Google Scholar 

  2. U. Scipioni Bertoli, G. Guss, S. Wu, M.J. Matthews, and J.M. Schoenung, Mater. Des. 135, 385 (2017).

    Article  Google Scholar 

  3. A.J. Detor, R. DiDomizio, R. Sharghi-Moshtaghin, N. Zhou, R. Shi, Y. Wang, D.P. McAllister, and M.J. Mills, Metall. Mater. Trans. A 49, 708 (2017).

    Article  Google Scholar 

  4. A. Mostafa, I. Picazo Rubio, V. Brailovski, M. Jahazi, and M. Medraj, Metals (Basel). 7, 196 (2017).

    Article  Google Scholar 

  5. D. Deng, R.L. Peng, H. Brodin, and J. Moverare, Mater. Sci. Eng., A 713, 294 (2018).

    Article  Google Scholar 

  6. P. Nie, O.A. Ojo, and Z. Li, Acta Mater. 77, 85 (2014).

    Article  Google Scholar 

  7. J.W. Elmer, T.A. Palmer, S.S. Babu, W. Zhang, and T. DebRoy, J. Appl. Phys. 95, 8327 (2004).

    Article  Google Scholar 

  8. Y. Ren, JOM 64, 140 (2012).

    Article  Google Scholar 

  9. T.A. Assefa, Y. Cao, S. Banerjee, S. Kim, D. Kim, H. Lee, S. Kim, J.H. Lee, S.-Y. Park, I. Eom, J. Park, D. Nam, S. Kim, S.H. Chun, H. Hyun, K. Sook Kim, P. Juhas, E.S. Bozin, M. Lu, C. Song, H. Kim, S.J.L. Billinge, and I.K. Robinson, Sci. Adv. 6, eaax2445 (2020).

    Article  Google Scholar 

  10. D.W. Brown, A. Losko, J.S. Carpenter, J.C. Cooley, B. Clausen, J. Dahal, P. Kenesei, and J.-S. Park, Metall. Mater. Trans. A 50, 2538 (2019).

    Article  Google Scholar 

  11. C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. De Carlo, L. Chen, A.D. Rollett, and T. Sun, Sci. Rep. 7, 3602 (2017).

    Article  Google Scholar 

  12. T.G. Gallmeyer, S. Moorthy, B.B. Kappes, M.J. Mills, B. Amin-Ahmadi, and A.P. Stebner, Addit. Manuf. 31, 100977 (2020).

    Google Scholar 

  13. J. A. Bernier, “HEXRD”, https://github.com/joelvbernier.

  14. S.A. Howard and K.D. Preston, Rev. Mineral. Geochemistry. 20, 217 (2017).

    Google Scholar 

  15. C. Aydinalp, An Introduction to the Study of Mineralogy, ed. J.D. Martín-Ramos, J.L. Díaz-Hernández, A. Cambeses, J.H. Scarrow and A. López-Galindo, (InTech, 2012), p. 73.

  16. R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett, Science 363, 849 (2019).

    Article  Google Scholar 

  17. G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, and W.F. Hammetter, Metall. Trans. A 20, 2149 (1989).

    Article  Google Scholar 

  18. A. Lingenfelter, Proc. Conf. Superalloys. 673 (1989).

  19. C. Garcia, A. Lis, E. Loria, and A. Deardo, Proc. Conf. Superalloys. 527, (1992).

  20. T. Antonsson and H. Fredriksson, Metall. Mater. Trans. B 36, 85 (2005).

    Article  Google Scholar 

  21. Special Metals Corporation. INCONEL ® Alloy 718. (Publication Number SMC-045, 2007), https://www.specialmetals.com/assets/smc/documents/inconel_alloy_718.pdf. Accessed 09 October 2020.

  22. J.N. DuPont, C.V. Robino, and A.R. Marder, Acta Mater. 46, 4781 (1998).

    Article  Google Scholar 

  23. X. Luan, H. Qin, F. Liu, Z. Dai, Y. Yi, and Q. Li, Crystals. 8, 307 (2018).

    Article  Google Scholar 

  24. P.E. Aba-Perea, T. Pirling, P.J. Withers, J. Kelleher, S. Kabra, and M. Preuss, Mater. Des. 89, 856 (2016).

    Article  Google Scholar 

  25. G.D. Janaki Ram, A. Venugopal Reddy, K. Prasad Rao, G.M. Reddy, and J.K. Sarin Sundar, J. Mater. Process. Technol. 167, 73 (2005).

    Article  Google Scholar 

  26. J.-S. Park, X. Zhang, H. Sharma, P. Kenesei, D. Hoelzer, M. Li, and J. Almer, J. Mater. Res. 30, 1380 (2015).

    Article  Google Scholar 

  27. W. Pantleon, H.F. Poulsen, J. Almer, and U. Lienert, Mater. Sci. Eng., A 387–389, 339 (2004).

    Article  Google Scholar 

  28. B.S. Yilbas, S.S. Akhtar, and C. Karatas, Opt. Lasers Eng. 48, 740 (2010).

    Article  Google Scholar 

  29. R. Jiang, A. Mostafaei, J. Pauza, C. Kantzos, and A.D. Rollett, Mater. Sci. Eng., A 755, 170 (2019).

    Article  Google Scholar 

  30. D.C. Pagan, K.K. Jones, J.V. Bernier, and T.Q. Phan, JOM (2020). https://doi.org/10.1007/s11837-020-04443-7.

    Article  Google Scholar 

  31. Y. Murata, M. Morinaga, N. Yukawa, H. Ogawa, and M. Kato, Proc. Conf. Superalloys. 81 (1994).

Download references

Acknowledgment

This work was supported by a grant from the National Nuclear Security Administration under grant number DE-NA0003915. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors acknowledge the help of Colorado School of Mines to provide the printed block for this work. The authors acknowledge use of the Materials Characterization Facility at Carnegie Mellon University supported by grant MCF-677785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony D. Rollett.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 405 kb)

Supplementary material 2 (GIF 77074 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S.A., Lim, R.E., Aroh, J.W. et al. Microscale Observation via High-Speed X-ray Diffraction of Alloy 718 During In Situ Laser Melting. JOM 73, 212–222 (2021). https://doi.org/10.1007/s11837-020-04481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04481-1

Navigation