Skip to main content

Advertisement

Log in

High-Energy Synchrotron X-Ray Diffraction and Its Application to In Situ Structural Phase-Transition Studies in Complex Sample Environments

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A solid may undergo a phase transition due to internal interaction competition or external stimuli. It is increasingly recognized that the lattice degrees of freedom often play a crucial role, especially in the vicinity of competing phases, where many intriguing properties exist. A crystal structure transition is usually accompanied by a drastic change in the mechanical, electrical, magnetic, and other properties. In situ study of the microscopic structural information of materials during phase transformation is of ultimate importance not only in understanding fundamental mechanisms but also in developing and processing advanced materials for broad technological applications. The availability of synchrotron-generated high-flux and high-energy x-rays has significantly advanced the field of materials research because of the deep penetration and low absorption of high-energy x-rays. Synchrotron high-energy x-ray diffraction facilities provide great research opportunities, especially for probing structural phase transformations of bulk materials in real time and in realistic conditions. In this overview we present technical details and capabilities of a synchrotron high-energy x-ray facility and its applications to in situ structural investigations of phase transitions in advanced materials in research areas ranging from condensed-matter and materials science and engineering to energy science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.J.L. Billinge and I. Levin, Science 316, 561 (2007).

    Article  Google Scholar 

  2. L.D. Landau and E.M. Lifshitz, Statistical Physics (London: Pergamon, 1958).

    MATH  Google Scholar 

  3. M.F. Collins, Magnetic Critical Scattering (New York: Oxford University Press, 1989).

    Google Scholar 

  4. M. Uehara, S. Mori, C.H. Chen, and S.-W. Cheong, Nature 399, 560 (1999).

    Article  Google Scholar 

  5. N. Mathur, Nature 400, 405 (1999).

    Article  Google Scholar 

  6. K.H. Ahn, T. Lookman, and A.R. Bishop, Nature 428, 401 (2004).

    Article  Google Scholar 

  7. T.Z. Ward, J.D. Budai, Z. Gai, J.Z. Tischler, Lifeng Yin, and J. Shen, Nat. Phys. 5, 885 (2009).

    Article  Google Scholar 

  8. B. Jaffe, R.S. Roth, and S. Marzullo, J. Appl. Phys. 25, 809 (1954).

    Article  Google Scholar 

  9. E. Cross, Nature 432, 24 (2004).

    Article  Google Scholar 

  10. M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H-k Mao, R.J. Hemley, Y. Ren, P. Lierman, and Z.G. Wu, Nature 451, 545 (2008).

    Article  Google Scholar 

  11. V.K. Pecharsky and K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997).

    Article  Google Scholar 

  12. S. Gama, A.A. Coelho, A. de Campos, A.M.G. Carvalho, F.C.G. Gandra, P.J. von Ranke, and N.A. de Oliveira, Phys. Rev. Lett. 93, 237202 (2004).

    Article  Google Scholar 

  13. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, and V.V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).

    Article  Google Scholar 

  14. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, Nature 439, 957 (2006).

    Article  Google Scholar 

  15. H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, and H.J. Maier, Adv. Funct. Mater. 19, 1 (2009).

    Article  Google Scholar 

  16. A.J. Millis, Nature 392, 147 (1998).

    Article  Google Scholar 

  17. U. Rütta, M.A. Beno, J. Strempfer, G. Jennings, C. Kurtz, and P.A. Montano, Nucl. Inst. Methods Phys. Res. A 467–468, 1026 (2001).

    Article  Google Scholar 

  18. Z.H. Chen, Y. Ren, Y. Qin, H.M. Wu, S.Q. Ma, J.G. Ren, X.M. He, Y.K. Sun, and K. Amine, J. Mater. Chem. 21, 5604 (2011).

    Article  Google Scholar 

  19. T.-L. Cheng, F.D. Ma, J.E. Zhou, G. Jennings, Y. Ren, Y.M. Jin, and Yu.U. Wang, JOM. doi:10.1007/s11837-011-0228-6.

  20. Y.D. Wang, Z.H. Nie, Y. Ren, and P.K. Liaw, JOM. doi:10.1007/s11837-011-0221-0.

  21. P. Schiffer, A.P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).

    Article  Google Scholar 

  22. J.W. Lynn, D.N. Argyriou, Y. Ren, Y. Chen, Y.M. Mukovskii, and D.A. Shulyatev, Phys. Rev. B 76, 014437 (2007).

    Article  Google Scholar 

  23. G. Burns and F.H. Dacol, Solid State Commun. 48, 853 (1983).

    Article  Google Scholar 

  24. I.-K. Jeong, T.W. Darling, J.K. Lee, Th Proffen, R.H. Heffner, J.S. Park, K.S. Hong, W. Dmowski, and T. Egami, Phys. Rev. Lett. 94, 147602 (2005).

    Article  Google Scholar 

  25. P. Ganesh, E. Cockayne, M. Ahart, R.E. Cohen, B. Burton, R.J. Hemley, Y. Ren, W.G. Yang, and Z.-G. Ye, Phys. Rev. B 81, 144102 (2010).

    Article  Google Scholar 

  26. G.Y. Xu, G. Shirane, J.R.D. Copley, and P.M. Gehring, Phys. Rev. B 69, 064112 (2004).

    Article  Google Scholar 

  27. F. Ye, Y. Ren, Q. Huang, J.A. Fernandez-Baca, P.C. Dai, J.W. Lynn, and T. Kimura, Phys. Rev. B 73, 220404(R) (2006).

    Google Scholar 

  28. T.T. Truong, Y. Qin, Y. Ren, Z.H. Chen, M.K. Chan, J.P. Greeley, K. Amine, and Y.G. Sun, Adv. Mater. 23, 4947 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all our colleagues, collaborators, and users, who contributed to the development and upgrade of the beamline and helped the experimental activities and worked on the scientific research projects at the beamline. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y. High-Energy Synchrotron X-Ray Diffraction and Its Application to In Situ Structural Phase-Transition Studies in Complex Sample Environments. JOM 64, 140–149 (2012). https://doi.org/10.1007/s11837-011-0218-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0218-8

Keywords

Navigation