Skip to main content
Log in

Effects of Vibration and TiB2 Additions to the Melt on the Structure and Strain-Rate Sensitive Deformation Behavior of an A356 Alloy

  • Aluminum and Magnesium: Casting Technology and Solidification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

For the first time, joint experiments have been conducted with samples of A356-TiB2 cast aluminum alloy under quasi-static and plane shock-wave loading. Alloys were obtained by introducing TiB2 particles using a master-alloy, combined with the effect of vibration treatment on the melt in order to fragment the dendritic structure and prevent its branching during solidification. The melt treatment and introduction of TiB2 particles allowed the average grain size to reduce to a third of that of the base cast alloy. During the experiments the strain rate and the shock-wave compression pressure were varied. It was shown that introducing particles affected the strain-rate sensitivity of the alloy. The best elastic–plastic and strength characteristics at increased strain rates of over 0.01 s−1 were demonstrated by an A356 alloy without TiB2 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.H. John, Aluminum: Properties and Physical Metallurgy (Metals Park: American Society for Metals, 1984), pp. 212–224.

    Google Scholar 

  2. G.K. Sigworth and T.A. Kuhn, Int. Metalcast. 1, 31 (2007). https://doi.org/10.1007/BF03355416.

    Article  Google Scholar 

  3. R.S. Rana, P. Rajesh, and S. Das, IJSRP 2, 1 (2012).

    Google Scholar 

  4. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto, Acta Mater. 84, 292 (2015). https://doi.org/10.1016/j.actamat.2014.10.055.

    Article  Google Scholar 

  5. H.R. Kotadia, M. Qian, D.G. Eskin, and A. Das, Mater. Des. 132, 266 (2017). https://doi.org/10.1016/j.matdes.2017.06.065.

    Article  Google Scholar 

  6. Y. Li, Q.L. Bai, J.C. Liu, H.X. Li, Q. Du, J.S. Zhang, and L.Z. Zhuang, Metall. Mater. Trans. A 47, 4024 (2016). https://doi.org/10.1007/s11661-016-3543-2.

    Article  Google Scholar 

  7. A. Mahamani, A. Jayasree, K. Mounika, K. Reddi, and N. Sakthivelan, IJMMP 10, 185 (2015). https://doi.org/10.1504/IJMMP.2015.072915.

    Article  Google Scholar 

  8. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow, Acta Mater. 48, 2823 (2000). https://doi.org/10.1016/S1359-6454(00)00094-X.

    Article  Google Scholar 

  9. H.R. Ezatpour, M. Torabi Parizi, S.A. Sajjadi, G.R. Ebrahimi, and A. Chaichi, Mater. Chem. Phys. 178, 119 (2016). https://doi.org/10.1016/j.matchemphys.2016.04.078.

    Article  Google Scholar 

  10. S.A. Vorozhtsov, D.G. Eskin, J. Tamayo, A.B. Vorozhtsov, V.V. Promakhov, A.A. Averin, and A.P. Khrustalyov, Metall. Mater. Trans. A 46, 2870 (2015). https://doi.org/10.1007/s11661-015-2850-3.

    Article  Google Scholar 

  11. R.T. Mousavian, R.A. Khosroshahi, S. Yazdani, D. Brabazon, and A.F. Boostani, Mater. Des. 89, 58 (2016). https://doi.org/10.1016/j.matdes.2015.09.130.

    Article  Google Scholar 

  12. W. Wang, Z. Fu, H. Wang, and R. Yuan, J. Eur. Ceram. Soc. 22, 1045 (2002). https://doi.org/10.1016/S0955-2219(01)00424-1.

    Article  Google Scholar 

  13. H. Liu, Y. Gao, L. Qi, Y. Wang, and J.F. Nie, Metall. Mater. Trans. A 46, 3287 (2015). https://doi.org/10.1007/s11661-015-2895-3.

    Article  Google Scholar 

  14. J. Campbell, Int. Mater. Rev. 2, 71 (1981). https://doi.org/10.1179/imtr.1981.26.1.71.

    Article  Google Scholar 

  15. S. Vorozhtsov, O. Kudryashova, V. Promakhov, V. Dammer, and A. Vorozhtsov, JOM 68, 3094 (2016). https://doi.org/10.1007/s11837-016-2147-z.

    Article  Google Scholar 

  16. N. Abu-Dheir, M. Khraisheh, K. Saito, and A. Male, Mater. Sci. Eng. A 393, 109 (2005). https://doi.org/10.1016/j.msea.2004.09.038.

    Article  Google Scholar 

  17. G. Wang, Q. Wang, M.A. Easton, M.S. Dargusch, M. Qian, D.G. Eskin, and D.H. StJohn, Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/s41598-017-10354-6.

    Article  Google Scholar 

  18. I.A. Zhukov, G.V. Garkushin, S.A. Vorozhtsov, A.P. Khrustalyov, S.V. Razorenov, A.V. Kvetinskaya, V.V. Promakhov, and A.S. Zhukov, Russ. Phys. J. 58, 1358 (2016). https://doi.org/10.1007/s11182-016-0655-5.

    Article  Google Scholar 

  19. Z. Zaiemyekeh, G.H. Liaghat, H. Ahmadi, M.K. Khan, and O. Razmkhah, Mater. Sci. Eng. A 753, 276 (2019). https://doi.org/10.1016/j.msea.2019.03.052.

    Article  Google Scholar 

  20. M. Karbalaei Akbari, H.R. Baharvandi, and K. Shirvanimoghaddam, Mater. Des. 66, 150 (2015). https://doi.org/10.1016/j.matdes.2014.10.048.

    Article  Google Scholar 

  21. M. Karbalaei Akbari, O. Mirzaee, and H.R. Baharvandi, Mater. Des. 46, 199 (2013). https://doi.org/10.1016/j.matdes.2012.10.008.

    Article  Google Scholar 

  22. G. Wang, Q. Wang, M.A. Easton, M.S. Dargusch, M. Qian, D.G. Eskin, and D.H. StJohn, Sci. Rep. 7, 9729 (2017). https://doi.org/10.1038/s41598-017-10354-6.

    Article  Google Scholar 

  23. A.P. Khrustalyov, G.V. Garkushin, I.A. Zhukov, S.V. Razorenov, and A.B. Vorozhtsov, Metals 9, 1 (2019). https://doi.org/10.3390/met9060715.

    Article  Google Scholar 

  24. G.I. Kanel, G.V. Garkushin, A.S. Savinykh, and S.V. Razorenov, J. Exp. Theor. Phys. 127, 337 (2018). https://doi.org/10.1134/S1063776118080022.

    Article  Google Scholar 

  25. S.V. Razorenov, Matt. Rad. Extrem. 3, 145 (2018). https://doi.org/10.1016/j.mre.2018.03.004.

    Article  Google Scholar 

  26. G.V. Garkushin, S.V. Razorenov, V.A. Krasnoveikin, A.A. Kozulin, and V.A. Skripnyak, Phys. Sol. Stat. 57, 337 (2015). https://doi.org/10.1134/S1063783415020109.

    Article  Google Scholar 

  27. G.V. Garkushin, O.N. Ignatova, G.I. Kanel, L.W. Meyer, and S.V. Razorenov, Phys. Sol. Stat. 45, 624 (2010). https://doi.org/10.3103/S0025654410040114.

    Article  Google Scholar 

  28. A.P. Khrustalyov, A.A. Kozulin, I.A. Zhukov, M.G. Khmeleva, A.B. Vorozhtsov, D. Eskin, S. Chankitmunkong, V.V. Platov, and S.V. Vasilyev, Metals 9, 1 (2019). https://doi.org/10.3390/met9101030.

    Article  Google Scholar 

  29. I.A. Zhukov, V.V. Promakhov, A.E. Matveev, V.V. Platov, A.P. Khrustalev, Ya.A. Dubkova, S.A. Vorozhtsov, and A.I. Potekaev, Russ. Phys. J. 60, 2025 (2018). https://doi.org/10.1007/s11182-018-1319-4.

    Article  Google Scholar 

  30. S. Vorozhtsov, L. Minkov, V. Dammer, A. Khrustalyov, I. Zhukov, V. Promakhov, A. Vorozhtsov, and M. Khmeleva, JOM 69, 2653 (2017). https://doi.org/10.1007/s11837-017-2594-1.

    Article  Google Scholar 

  31. A.P. Khrustalyov, G.V. Garkushin, I.A. Zhukov, and S.V. Razorenov, Tech. Phys. Lett. 44, 912 (2018). https://doi.org/10.1134/S1063785018100255.

    Article  Google Scholar 

  32. L.M. Barker and R.E. Hollenbach, ‎J. Appl. Phys. 43, 4669 (1972). https://doi.org/10.1063/1.1660986I.

    Article  Google Scholar 

  33. V. Zhukov, S. Promakhov, A. Vorozhtsov, A. Kozulin, and A. Khrustalyov, Vorozhtsov. JOM 70, 2731 (2018). https://doi.org/10.1007/s11837-018-3132-5.

    Article  Google Scholar 

  34. W.P. Mason, J. Acoust. Soc. Am. 28, 1197 (1956).

    Article  Google Scholar 

  35. I.A. Zhukov, A.A. Kozulin, A.P. Khrustalyov, N.I. Kahidze, M.G. Khmeleva, E.N. Moskvichev, D.V. Lychagin, and A.B. Vorozhtsov, Metals 9, 1199 (2019). https://doi.org/10.3390/met9111199.

    Article  Google Scholar 

  36. I.A. Zhukov, A.A. Kozulin, A.P. Khrustalyov, A.E. Matveev, V.V. Platov, A.B. Vorozhtsov, T.V. Zhukova, and V.V. Promakhov, Metals 9, 65 (2019). https://doi.org/10.3390/met9010065.

    Article  Google Scholar 

  37. K. Remøe, I. Marthinsen, K. Westermann, J. Pedersen, and C. Røyset, Marioara. Mater. Sci. Eng. A 693, 60 (2017). https://doi.org/10.1016/j.msea.2017.03.078.

    Article  Google Scholar 

  38. R.J. Immanuel and S.K. Panigrahi, Mater. Sci. Eng. A 712, 747 (2018). https://doi.org/10.1016/j.msea.2017.12.015.

    Article  Google Scholar 

  39. N. Behm, H. Yang, J. Shen, K. Ma, L.J. Kecskes, E.J. Lavernia, J.M. Schoenung, and Q. Wei, Mater. Sci. Eng. A 650, 305 (2016). https://doi.org/10.1016/j.msea.2015.10.064.

    Article  Google Scholar 

  40. G.I. Kanel, S.V. Razorenov, A.V. Utkin, and V.E. Fortov, Shock Compression of Condensed Matter (Moscow: Yanus-K, 1996) (in Russian).

    Google Scholar 

  41. G.V.S. Murthy, D. Patel, and K.L. Sahoo, Ins. Non-Destruct. Test. Cond. Mon. 58, 367 (2016). https://doi.org/10.1784/insi.2016.58.7.367.

    Article  Google Scholar 

  42. K. Vecchio and G. Gray, J. Phys. IV Coll. 04, 231 (1994). https://doi.org/10.1051/jp4:1994834.jpa-00253389.

    Article  Google Scholar 

  43. G.I. Kanel’, J. Appl. Mech. Tech. Phys. 42, 358 (2001).

    Article  Google Scholar 

  44. S. P. Marsh, LASL Shock Hugoniot Data (Berkeley: University of California Press, 1980, 2008 Ed.).

Download references

Acknowledgements

The development of aluminum alloys and study of the structure and their mechanical properties under quasi-static loads were performed with the financial support of a grant from the Russian Science Foundation (Project No. 17-13-01252) at Tomsk State University. The dynamic loading experiments of materials were funded by RFBR according to the research Project No. 19-38-50066 mol_nr at the Institute of Problems of Chemical Physics of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton P. Khrustalyov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmeleva, M.G., Zhukov, I.A., Garkushin, G.V. et al. Effects of Vibration and TiB2 Additions to the Melt on the Structure and Strain-Rate Sensitive Deformation Behavior of an A356 Alloy. JOM 72, 3787–3797 (2020). https://doi.org/10.1007/s11837-020-04339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04339-6

Navigation