Skip to main content
Log in

The effects of hot rolling and heat treatment on the microstructure and mechanical properties of an Al-Cu-Mg-Sc alloy reinforced with in situ TiB2 particulates

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of particulate fraction, rolling thickness reduction, and heat treatment on the microstructure and mechanical properties of an Al-Cu-Mg-Sc/TiB2 composite (TiB2 /Al2618) are analyzed. The yield strength (YS), ultimate tensile strength (UTS), and elongation of both the matrix alloy and TiB2/Al2618 composite are increased with the increase of rolling reduction. The YS and UTS reach 250 MPa and 300 MPa, respectively, after a 70% rolling reduction, which are 16.3% and 7.4% higher than the unreinforced matrix alloy of an identical amount of rolling reduction. After solid solution and artificial aging treatment, both YS and UTS are further increased for both the matrix alloy and the composites with a 35% rolling reduction. While for those with 70% rolling reduction, the improvement is alleviated. The effects of hot rolling, heat treatment, and TiB2 particulates on the microstructure and mechanical properties are discussed to understand the underlying mechanisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the author on reasonable request.

References

  1. N. Chawla, Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites. Adv. Eng. Mater. 3, 357–370 (2001). https://doi.org/10.1002/1527-2648(200106)3:6%3c357::AID-ADEM357%3e3.0.CO;2-I

    Article  CAS  Google Scholar 

  2. D.B. Miracle, Metal matrix composites – From science to technological significance. Comp. Sci. Technol. 65, 2526–2540 (2005). https://doi.org/10.1016/j.compscitech.2005.05.027

    Article  CAS  Google Scholar 

  3. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites - a review. J. Mater. Sci. 26, 1137–1156 (1991). https://doi.org/10.1007/BF00544448

    Article  CAS  Google Scholar 

  4. M. Karbalaei Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 66, 150–161 (2015). https://doi.org/10.1016/j.matdes.2014.10.048

    Article  CAS  Google Scholar 

  5. L. Arnberg, L. Bäckerud, H. Klang, 1: Production and properties of master alloys of Al–Ti–B type and their ability to grain refine aluminium. Met. Technol. 9, 1–6 (1982). https://doi.org/10.1179/030716982803286205

    Article  CAS  Google Scholar 

  6. X. Dong, H. Youssef, Y. Zhang, S. Wang, S. Ji, High performance Al/TiB2 composites fabricated by nanoparticle reinforcement and cutting-edge super vacuum assisted die casting process. Compos. Part B Eng. 177, 107453 (2019). https://doi.org/10.1016/j.compositesb.2019.107453

    Article  CAS  Google Scholar 

  7. S. Ji, F. Amirkhanlu, A. Mostaed, R. Beanland, Atomic structure and interface chemistry in a high-sti ff ness and high- strength Al – Si – Mg / TiB2 nanocomposite. Mater. Sci. Eng. A. (2019). https://doi.org/10.1016/j.msea.2019.138072

    Article  Google Scholar 

  8. P. Davies, J.L.F. Kellie, J.V. Wood, Development of cast aluminium metal matrix composites. Key Eng. Mater. 77–78, 357–362 (1992). https://doi.org/10.4028/www.scientific.net/KEM.77-78.357

    Article  Google Scholar 

  9. X. Liu, Y. Liu, D. Huang, Q. Han, X. Wang, Tailoring in-situ TiB2 particulates in aluminum matrix composites. Mater. Sci. Eng. A. 705, 55–61 (2017). https://doi.org/10.1016/j.msea.2017.08.047

    Article  CAS  Google Scholar 

  10. S. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R Reports. 29, 49–113 (2000). https://doi.org/10.1016/S0927-796X(00)00024-3

    Article  Google Scholar 

  11. İ Özbek, A study on the re-solution heat treatment of AA 2618 aluminum alloy. Mater. Charact. 58, 312–317 (2007)

    Article  Google Scholar 

  12. N.M. Kumar, S.S. Kumaran, L.A. Kumaraswamidhas, Aerospace application on Al 2618 with reinforced e Si 3 N 4, AlN and ZrB2 in-situ composites. J. Alloys Compd. 672, 238–250 (2016). https://doi.org/10.1016/j.jallcom.2016.02.155

    Article  CAS  Google Scholar 

  13. S.C. Bergsma, X. Li, M.E. Kassner, Effects of thermal processing and copper additions on the mechanical properties of aluminum alloy ingot AA 2618. J. Mater. Eng. Perform. 5, 100–102 (1996)

    Article  CAS  Google Scholar 

  14. E.M. Elgallad, P. Shen, Z. Zhang, X. Chen, Effects of heat treatment on the microstructure and mechanical properties of AA2618 DC cast alloy. Mater. Des. 61, 133–140 (2014). https://doi.org/10.1016/j.matdes.2014.04.045

    Article  CAS  Google Scholar 

  15. J.H. Wang, D.Q. Yi, Preparation and properties of alloy 2618 reinforced by submicron AIN particles. J. Mater. Eng. Perform. 15, 596–600 (2006)

    Article  Google Scholar 

  16. F. Nový, M. Janeček, R. Král, Microstructure changes in a 2618 aluminium alloy during ageing and creep. J. Alloys Compd. 487, 146–151 (2009). https://doi.org/10.1016/j.jallcom.2009.08.014

    Article  CAS  Google Scholar 

  17. C.B. Fuller, D.N. Seidman, D.C. Dunand, Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures. Acta Mater. 51, 4803–4814 (2003). https://doi.org/10.1016/S1359-6454(03)00320-3

    Article  CAS  Google Scholar 

  18. Z. Bian, Y. Xiao, L. Hu, Y. Liu, Z. Chen, M. Wang, D. Chen, H. Wang, Stimulated heterogeneous distribution of Sc element and its correlated local hardening effect in Al-Fe-Ni-Sc alloy. Mater. Sci. Eng. A. 771, 138650 (2020). https://doi.org/10.1016/j.msea.2019.138650

    Article  CAS  Google Scholar 

  19. K. Yu, W. Li, S. Li, J. Zhao, Mechanical properties and microstructure of aluminum alloy 2618 with Al3(Sc. Zr) phases. Mater. Sci. Eng. A. 368, 88–93 (2004). https://doi.org/10.1016/j.msea.2003.09.092

    Article  CAS  Google Scholar 

  20. S.C. Tjong, K.C. Lau, Properties and abrasive wear of TiB2/Al-4% Cu composites produced by hot isostatic pressing. Compos. Sci. Technol. 59, 2005–2013 (1999)

    Article  CAS  Google Scholar 

  21. B.-X. Dong, Q. Li, Z.-F. Wang, T.-S. Liu, H.-Y. Yang, S.-L. Shu, L.-Y. Chen, F. Qiu, Q.-C. Jiang, L.-C. Zhang, Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Compos. Part B Eng. (2021). https://doi.org/10.1016/j.compositesb.2021.108912

    Article  Google Scholar 

  22. J. Tang, J. Geng, C. Xia, M. Wang, D. Chen, H. Wang, Superior strength and ductility of in situ nano TiB2/Al–Cu–Mg composites by cold rolling and post-aging treatment. Materials (Basel). 12, 3626 (2019)

    Article  CAS  Google Scholar 

  23. S.M. Ma, P. Zhang, G. Ji, Z. Chen, G.A. Sun, S.Y. Zhong, V. Ji, H.W. Wang, Microstructure and mechanical properties of friction stir processed Al-Mg-Si alloys dispersion-strengthened by nanosized TiB2 particles. J. Alloys Compd. 616, 128–136 (2014). https://doi.org/10.1016/j.jallcom.2014.07.092

    Article  CAS  Google Scholar 

  24. Q. Yang, D.L. Cheng, J. Liu, L. Wang, Z. Chen, M.L. Wang, S.Y. Zhong, Y. Wu, G. Ji, H.W. Wang, Microstructure evolution of the TiB2/Al composites fabricated by powder metallurgy during hot extrusion. Mater. Charact. (2019). https://doi.org/10.1016/j.matchar.2019.109834

    Article  Google Scholar 

  25. S. Ma, Y. Wang, X. Wang, Microstructures and mechanical properties of an Al-Cu-Mg-Sc alloy reinforced with in-situ TiB2 particulates. Mater. Sci. Eng. A. 788, 139603 (2020). https://doi.org/10.1016/j.msea.2020.139603

    Article  CAS  Google Scholar 

  26. R. Tao, Y. Zhao, X. Kai, Z. Zhao, R. Ding, L. Liang, W. Xu, Effects of hot rolling deformation on the microstructure and tensile properties of an in situ-generated ZrB2 nanoparticle-reinforced AA6111 composite. Mater. Sci. Eng. A. 732, 138–147 (2018). https://doi.org/10.1016/j.msea.2018.06.107

    Article  CAS  Google Scholar 

  27. B.V.R. Bhat, Y.R. Mahajan, Y.V.R.K. Prasad, Effect of volume fraction of SiCp reinforcement on the processing maps for 2124 Al matrix composites. Metall. Mater. Trans. A. 31, 629–639 (2000). https://doi.org/10.1007/s11661-000-0006-5

    Article  Google Scholar 

  28. F.J. Humphreys, W.S. Miller, M.R. Djazeb, Microstructural development during thermomechanical processing of particulate metal-matrix composites. Mater. Sci. Technol. (United Kingdom) 6, 1157–1166 (1990). https://doi.org/10.1179/mst.1990.6.11.1157

    Article  CAS  Google Scholar 

  29. G. Li, T. Xu, H. Wang, Y. Zhao, G. Chen, X. Kai, Microstructure study of hot rolling nanosized in-situ Al2O3 particle reinforced A356 matrix composites. J. Alloys Compd. 855, 157107 (2021). https://doi.org/10.1016/j.jallcom.2020.157107

    Article  CAS  Google Scholar 

  30. Z. Chen, G.A. Sun, Y. Wu, M.H. Mathon, A. Borbely, D. Chen, G. Ji, M.L. Wang, S.Y. Zhong, H.W. Wang, Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites. Mater. Des. 116, 577–590 (2017). https://doi.org/10.1016/j.matdes.2016.12.070

    Article  CAS  Google Scholar 

  31. J.C. Lee, K.N. Subramanian, The tensile properties of hot-rolled (Al2O3)p-Al composites. Mater. Sci. Eng. A. 196, 71–78 (1995). https://doi.org/10.1016/0921-5093(94)09709-7

    Article  Google Scholar 

  32. R.V. Kumar, R. Keshavamurthy, C.S. Perugu, P.G. Koppad, M. Alipour, Influence of hot rolling on microstructure and mechanical behaviour of Al6061-ZrB2 in-situ metal matrix composites. Mater. Sci. Eng. A. 738, 344–352 (2018). https://doi.org/10.1016/j.msea.2018.09.104

    Article  CAS  Google Scholar 

  33. A.M. El-Sabbagh, M. Soliman, M.A. Taha, H. Palkowski, Effect of rolling and heat treatment on tensile behaviour of wrought Al-SiCp composites prepared by stir-casting. J. Mater. Process. Technol. 213, 1669–1681 (2013). https://doi.org/10.1016/j.jmatprotec.2013.04.013

    Article  CAS  Google Scholar 

  34. ASTM-E112, Standard Test Methods for Determining Average Grain Size, (2013) https://doi.org/10.1520/E0112-13.1.4.

  35. F.J. Humphreys, Recrystallization and related annealing phenomena, 2nd edn. (Elsevier, Amsterdam, 2004)

    Google Scholar 

  36. P. Shen, E.M. Elgallad, X.G. Chen, On the aging behavior of AA2618 DC cast alloy (Met. Mater. Ser, Miner, 2016). https://doi.org/10.1007/978-3-319-65136-1_65

    Book  Google Scholar 

  37. Y.H. Gao, J. Kuang, G. Liu, J. Sun, Effect of minor Sc and Fe co-addition on the microstructure and mechanical properties of Al-Cu alloys during homogenization treatment. Mater. Sci. Eng. A. 746, 11–26 (2019). https://doi.org/10.1016/j.msea.2018.12.099

    Article  CAS  Google Scholar 

  38. F. Chen, Z. Chen, F. Mao, T. Wang, Z. Cao, TiB2 reinforced aluminum based in situ composites fabricated by stir casting. Mater. Sci. Eng. A. 625, 357–368 (2015). https://doi.org/10.1016/j.msea.2014.12.033

    Article  CAS  Google Scholar 

  39. I.N.A. Oguocha, S. Yannacopoulos, Precipitation and dissolution kinetics in Al-Cu-Mg-Fe-Ni alloy 2618 and Al-alumina particle metal matrix composite. Mater. Sci. Eng. A. 231, 25–33 (1997). https://doi.org/10.1016/s0921-5093(97)00065-8

    Article  Google Scholar 

  40. H. Lu, P. Kadolkar, K. Nakazawa, T. Ando, C.A. Blue, Precipitation behavior of AA2618, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 38, 2379–2388 (2007). https://doi.org/10.1007/s11661-007-9295-2

    Article  CAS  Google Scholar 

  41. C.Y. Dan, Z. Chen, G. Ji, S.H. Zhong, Y. Wu, F. Brisset, H.W. Wang, V. Ji, Microstructure study of cold rolling nanosized in-situ TiB2 particle reinforced Al composites. Mater. Des. 130, 357–365 (2017). https://doi.org/10.1016/j.matdes.2017.05.076

    Article  CAS  Google Scholar 

  42. M. Tan, Q. Xin, Z. Li, B.Y. Zong, Influence of SiC and Al2O3 particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites. J. Mater. Sci. 36, 2045–2053 (2001). https://doi.org/10.1023/A:1017591117670

    Article  CAS  Google Scholar 

  43. D. Wang, H. Zhang, H. Nagaumi, P. Jia, J. Cui, Microstructural homogeneity, mechanical properties, and wear behavior of in situ Mg2Si particles reinforced Al-matrix composites fabricated by hot rolling. J. Mater. Res. Technol. 9, 1882–1892 (2020). https://doi.org/10.1016/j.jmrt.2019.12.020

    Article  CAS  Google Scholar 

  44. R. Casati, J.N. Lemke, A.Z. Alarcon, M. Vedani, Aging behavior of high-strength Al Alloy 2618 produced by selective laser melting, metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48, 575–579 (2017). https://doi.org/10.1007/s11661-016-3883-y

    Article  CAS  Google Scholar 

  45. K. Yu, S. Li, W. Li, Recrystallization behavior in an Al-Cu-Mg-Fe-Ni alloy with trace scandium and zirconium. Mater. Trans. JIM. 41, 358–361 (2000). https://doi.org/10.2320/matertrans1989.41.358

    Article  CAS  Google Scholar 

  46. H. Sekine, R. Chent, A combined microstructure strengthening analysis of SiCp/Al metal matrix composites. Composites 26, 183–188 (1995)

    Article  CAS  Google Scholar 

  47. C.S. Pande, K.P. Cooper, Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 54, 689–706 (2009). https://doi.org/10.1016/j.pmatsci.2009.03.008

    Article  CAS  Google Scholar 

  48. Z. Liu, N. Cheng, Q. Zheng, J. Wu, Q. Han, Z. Huang, J. Xing, Y. Li, Y. Gao, Processing and tensile properties of A356 composites containing in situ small-sized Al3Ti particulates. Mater. Sci. Eng. A. 710, 392–399 (2018). https://doi.org/10.1016/j.msea.2017.11.005

    Article  CAS  Google Scholar 

  49. R. Kapoor, N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy. Mater. Sci. Eng. A. 527, 5246–5254 (2010)

    Article  Google Scholar 

  50. A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater. Sci. Eng. A. 531, 112–118 (2012)

    Article  CAS  Google Scholar 

  51. M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, H. Wang, Mechanical properties of in-situ TiB2/A356 composites. Mater. Sci. Eng. A. 590, 246–254 (2014). https://doi.org/10.1016/j.msea.2013.10.021

    Article  CAS  Google Scholar 

  52. L.H. Dai, Z. Ling, Y.L. Bai, Size-dependent inelastic behavior of particle-reinforced metal–matrix composites. Compos. Sci. Technol. 61, 1057–1063 (2001). https://doi.org/10.1016/S0266-3538(00)00235-9

    Article  CAS  Google Scholar 

  53. C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater. 55, 5115–5121 (2007). https://doi.org/10.1016/j.actamat.2007.05.032

    Article  CAS  Google Scholar 

  54. C.S. Kim, I. Sohn, M. Nezafati, J.B. Ferguson, B.F. Schultz, Z. Bajestani-Gohari, P.K. Rohatgi, K. Cho, Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J. Mater. Sci. 48, 4191–4204 (2013). https://doi.org/10.1007/s10853-013-7232-x

    Article  CAS  Google Scholar 

  55. N.B. Podymova, I.E. Kalashnikov, L.K. Bolotova, L.I. Kobeleva, Laser-ultrasonic nondestructive evaluation of porosity in particulate reinforced metal-matrix composites. Ultrasonics 99, 105959 (2019). https://doi.org/10.1016/j.ultras.2019.105959

    Article  CAS  Google Scholar 

  56. G.M. Janowski, B.J. Pletka, The effect of particle size and volume fraction on the aging behavior of a liquid-phase sintered SiC/aluminum composite. Metall. Mater. Trans. A. 26, 3027–3035 (1995). https://doi.org/10.1007/BF02669659

    Article  Google Scholar 

  57. T. Das, P.R. Munroe, S. Bandyopadhyay, The effect of Al2O3 particulates on the precipitation behaviour of 6061 aluminium-matrix composites. J. Mater. Sci. 31, 5351–5361 (1996). https://doi.org/10.1007/BF01159304

    Article  CAS  Google Scholar 

  58. A. Mandal, M. Chakraborty, B.S. Murty, Ageing behaviour of A356 alloy reinforced with in-situ formed TiB2 particles. Mater. Sci. Eng. A. 489, 220–226 (2008). https://doi.org/10.1016/j.msea.2008.01.042

    Article  CAS  Google Scholar 

  59. I.N.A. Oguocha, Y. Jin, S. Yannacopoulos, Characterisation of AA2618 containing alumina particles. Mater. Sci. Technol. 13, 173–181 (1997). https://doi.org/10.1179/mst.1997.13.3.173

    Article  CAS  Google Scholar 

  60. M. Gupta, M.K. Surappa, Effect of weight percentage of SiC particulates on the ageing behaviour of 6061/SiC metal matrix composites. J. Mater. Sci. Lett. 14, 1283–1285 (1995). https://doi.org/10.1007/BF01262268

    Article  CAS  Google Scholar 

  61. B. Wang, E. Jha, Microstructural analysis of Al alloys dispersed with TiB2 particulate for MMC applications. J. Microsc. 196, 137–145 (1999). https://doi.org/10.1046/j.1365-2818.1999.00620.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SM is acknowledging the Graduate School of Purdue University for a Ross Fellowship and a Bilsland Fellowship for his study. The authors would also like to acknowledge Purdue Research Foundation for its financial support in the production of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Wang.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Wang, X. The effects of hot rolling and heat treatment on the microstructure and mechanical properties of an Al-Cu-Mg-Sc alloy reinforced with in situ TiB2 particulates. Journal of Materials Research 37, 3680–3694 (2022). https://doi.org/10.1557/s43578-022-00741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00741-9

Navigation